Abstract

This paper presents a new design concept for a morphing triangle-shaped compliant mechanism. The novel design is a bistable mechanism that has one changeable side. These morphing triangles may be arrayed to create shape-morphing structures. The mechanism design was based on a six-bar dwell mechanism that can fit in a triangle shape and has stable positions at the motion-limit (dead-center) positions. An example of the triangle-shaped compliant mechanism was designed and prototyped: an isosceles triangle with a vertex that changes from 120 deg to 90 deg and vice versa. Three of these in the 120-deg configuration lie flat and when actuated to the 90-deg configuration become a cube corner. This design may be of use for folding and packaging assistance. The mechanism was designed using geometric constraint programming. Force and potential energy analyses characterize the triangle mechanism’s stability. Because of its dead-center motion limits, the vertex angle of the triangle cannot be extended past the range of 90–120 deg, in spite of the mechanism’s compliant joints. Furthermore, because it is a dwell mechanism, the vertex angle is almost immobile near its stable configurations, although other links in the mechanism move. This makes the stable positions of the vertex angle robust against stress relaxation and manufacturing errors. We believe this is the first demonstration of this kind of robustness in bistable mechanisms.

References

References
1.
Lang
,
R. J.
, and
Howell
,
L.
,
2018
, “
Rigidly Foldable Quadrilateral Meshes From Angle Arrays
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021004
. https://doi.org/10.1115/1.4038972
2.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
J. Mech. Eng. Sci.
,
216
(
10
), pp.
959
970
. https://doi.org/10.1243/095440602760400931
3.
Sun
,
J.
,
Guan
,
Q.
,
Liu
,
Y.
, and
Jinsong
,
L.
,
2016
, “
Morphing Aircraft Based on Smart Materials and Structures: A State-of-the-art Review
,”
J. Intell. Mater. Syst. Strucures
,
27
(
17
), pp.
2289
2312
. 10.1177/1045389X16629569
4.
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Review of Shape-Morphing Automobile Structures: Concepts and Outlook
,”
Proc. Inst. Mech. Eng. Part D: J. Aut. Eng.
,
277
(
11
), pp.
1603
1622
.
5.
Zhao
,
K.
, and
Schmiedeler
,
J. P.
,
2016
, “
Using Rigid-Body Mechanism Topologies to Design Shape-Changing Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011014
. 10.1115/1.4030585
6.
Zhang
,
B.
,
Liao
,
Z.
,
Yang
,
P.
, and
Liao
,
H.
,
2019
, “
Robotic Visible Forceps Manipulator With a Novel Linkage Bending Mechanism
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011012
. 10.1115/1.4041941
7.
Sofia
,
A. Y. N.
,
Elzey
,
D. M.
, and
Wadley
,
H. N. G.
,
2009
, “
Shape Morphing Hinged Truss Structures
,”
J. Smart Mater. Structures
,
18
(
6
), pp.
065012
.
8.
Yang
,
Y.
, and
You
,
Z.
,
2018
, “
Geometry of Transformable Metamaterials Inspired by Modular Origami
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021001
.
9.
Lucato
,
D. S.
,
Wang
,
S. L. J.
,
Maxwell
,
P.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2004
, “
Design and Demonstration of a High Authority Shape Morphing Structure
,”
Int. J. Solids Structures
,
41
(
13
), pp.
3521
3543
. 10.1016/j.ijsolstr.2004.02.012
10.
Milojevic
,
A.
, and
Pavlovic
,
N.
,
2016
, “
Development of a New Adaptive Shape Morphing Compliant Structure With Embedded Actuators
,”
J. Int. Mater. Syst. Structures
,
27
(
10
), pp.
1306
1328
. 10.1177/1045389X15590270
11.
Yang
,
A. T.
, and
Freudenstein
,
F.
,
1964
, “
Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanism
,”
ASME J. Appl. Mech.
,
86
(
2
), pp.
300
308
. 10.1115/1.3629601
12.
Murphy
,
T.
,
Kanaber
,
J.
, and
Koehler
,
C.
,
2011
, “
PEZ: Expanding CubeSat Capabilities Through Innovative Mechanism Design
,”
Proceedings of the AIAA/USU Conference on Small Satellites
,
Logan, UT
,
Aug. 11
, pp.
1
4
.
13.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
14.
Greenberg
,
H.
, and
Magleby
,
S.
,
2011
, “
Using Lamina Emergent Mechanisms to Address Needs for a Space Environment
,”
Utah Space Grant Consortium
,
Logan, UT
.
15.
Jacobsen
,
J.
,
Chen
,
G.
,
Howell
,
L.
, and
Magleby
,
S.
,
2009
, “
Lamina Emergent Torsion (LET) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
. 10.1016/j.mechmachtheory.2009.05.015
16.
Elzey
,
D. M.
,
Sofia
,
A. Y.
, and
Wadley
,
H. N.
,
2003
, “
A Bio-Inspired, High-Authority Actuator for Shape Morphing Structure
,”
Proceedings of SPIE
,
San Diego, CA
.
17.
Shai
,
O.
, and
Polansky
,
I.
,
2006
, “
Finding Dead-Point Positions of Planar Pin-Connected Linkages Through Graph Theoretical Duality Principle
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
599
609
. 10.1115/1.2179461
18.
Stanisic
,
M. M.
,
2014
,
Mechanisms and Machines: Kinematics, Dynamics, and Synthesis
,
Cengage Learning
,
Stamford
.
19.
Hong-Sen
,
Y.
, and
Long-long
,
W.
,
1989
, “
On the Dead-Center Position of Planar Linkage Mechanisms
,”
J. Mech. Trans. Des.
,
111
(
1
), pp.
40
46
. 10.1115/1.3258969
20.
Cleghorn
,
W.
,
2005
,
Mechanics of Machines
,
Oxford University Press
,
New York
.
21.
Soni
,
A. H.
,
1974
,
Mechanism Synthesis and Analysis
,
McGraw-Hill
,
New York
.
22.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
23.
Iseri
,
H.
,
2003
, “
Paper Models of Surfaces with Curvature
,”
Creative Visualization Labs Baltimore Joint Mathematics Meeting
,
Baltimore, MD
,
Jan. 18
, Vol.
18
, pp.
1
8
.
24.
Iseri
,
H.
,
2002
, “
Impulse Gauss Curvatures
,”
SSHE-MA Conference
,
Mansfield, CT
, Vol.
14
, p.
299
.
25.
Chiang
,
C.
,
1988
,
Kinematics of Spherical Mechanisms
,
Cambridge University Press
,
Cambridge
.
26.
Strang
,
G.
,
1986
,
Introduction to Applied Mathematics
,
Wellesby-Cambridge Press
,
Wellesley, MA
.
27.
Norton
,
R. L.
,
2012
,
Design of Machinery
,
McGraw Hill
,
Worcester
.
28.
Kinzel
,
E. C.
,
Schmiedeler
,
J. P.
, and
Pennock
,
G. R.
,
2005
, “
Kinematic Synthesis for Finitely Separated Positions Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1070
1079
. 10.1115/1.2216735
29.
Schmiedeler
,
J. P.
,
Clark
,
B. C.
,
Kinzel
,
E. C.
, and
Pennock
,
G. R.
,
2014
, “
Kinematic Synthesis for Infinitesimally and Multiply Separated Positions Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
,
136
(
3
), p.
034503
. 10.1115/1.4026152
30.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011009
. 10.1115/1.4029325
You do not currently have access to this content.