Abstract

Spasticity is a hypertonic muscle behavior commonly observed in patients with multiple sclerosis, cerebral palsy, stroke, etc. Clinical assessment for spasticity is done through passive stretch evaluations of various joints using qualitative clinical scales, such as the Modified Ashworth Scale (MAS). Due to the subjective nature of this evaluation method, diagnostic results can have poor reliability and inconsistency. A few research groups have developed electromechanical training simulators of upper arm spasticity with the intent of providing healthcare students practical training opportunities. This paper presents a novel, purely mechanical (nonpowered) training simulator as an alternative design approach. This passive design utilizes a hydraulic damper with selectable viscous effect to simulate the speed-dependent spastic muscle tone and a Scotch-Yoke linkage system to create the “catch-release” behavior of spasticity. An analytical fluid model was developed to systematically design the hydraulic damper. The error residuals between model prediction and experimental damping force were found within ±2.0 N and percent errors within ±10% across various testing speeds (i.e., 250, 500, 750, and 1000 mm/min). The performance of the fully assembled simulator was tested under slow (ω ≤ 60 deg/s), medium (60 deg/s < ω < 150 deg/s), and fast (ω ≥ 150 deg/s) stretch speeds, where ω is the joint angular speed. Preliminary bench-top results suggested the feasibility of replicating five distinct levels of spasticity behaviors (MAS levels 0–4), where resistive torque increased with higher stretch speed and peak resistive torque ranged from 1.3 to 6.7 N · m under the fast stretch speed.

References

References
1.
Pandyan
,
A. D.
,
Gregoric
,
M.
,
Barnes
,
M. P.
,
Wood
,
D.
,
Van Wijck
,
F.
,
Burridge
,
J.
,
Hermens
,
H.
, and
Johnson
,
G. R.
,
2005
, “
Spasticity: Clinical Perceptions, Neurological Realities and Meaningful Measurement
,”
Disabil. Rehabil.
,
27
(
1–2
), pp.
2
6
. 10.1080/09638280400014576
2.
Burke
,
D.
,
1988
, “
Spasticity as an Adaptation to Pyramidal Tract Injury
,”
Adv. Neurol.
,
47
, pp.
401
423
.
3.
Barnes
,
M. P.
, and
Johnson
,
G. R.
,
2008
,
Upper Motor Neurone Syndrome and Spasticity: Clinical Management and Neurophysiology
,
Cambridge University Press
,
New York
.
4.
Wu
,
Y. N.
,
Park
,
H. S.
,
Ren
,
Y.
,
Gaebler-Spira
,
D.
,
Chen
,
J. J.
, and
Zhang
,
L. Q.
,
2006
, “
Measurement of Elbow Spasticity in Stroke Patients Using a Manual Spasticity Evaluator
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology—Proceedings
,
New York, USA
,
Aug. 30–Sept. 3
, pp.
3974
3977
.
5.
Lance
,
J. W.
,
Feldman
,
R. G.
,
Young
,
R. R.
, and
Koella
,
W. P.
, eds,
1980
, “Pathophysiology of Spasticity and Clinical Experience With Baclofen,”
Spasticity: Disordered Motor Control
,
Year Book Medical Publishers
,
Chicago, IL
, pp.
185
204
.
6.
Bohannon
,
R. W.
, and
Smith
,
M. B.
,
1987
, “
Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity
,”
Phys. Ther.
,
67
(
2
), pp.
206
207
. 10.1093/ptj/67.2.206
7.
McGibbon
,
C. A.
,
Sexton
,
A.
,
Jones
,
M.
, and
O’Connell
,
C.
,
2013
, “
Elbow Spasticity During Passive Stretch-Reflex: Clinical Evaluation Using a Wearable Sensor System
,”
J. Neuroeng. Rehabil.
,
10
(
1
), p.
61
. 10.1186/1743-0003-10-61
8.
Boyd
,
R. N.
, and
Graham
,
H.
,
1999
, “
Objective Measurement of Clinical Findings in the Use of Botulinum Toxin Type A for the Management of Children With Cerebral Palsy
,”
Eur. J. Neurol.
,
6
(
suppl. 4
), pp.
S23
S35
. 10.1111/j.1468-1331.1999.tb00031.x
9.
Yan
,
X.
,
He
,
L.
, and
Zheng
,
Y.
,
2015
, “
Inter-Rater Reliability of Modified Ashworth Scale and Modified Tardieu Scale in Children With Spastic Cerebral Palsy
,”
J. Child Neurol.
,
30
(
1
), pp.
18
21
. 10.1111/dmcn.15_12886
10.
Mehrholz
,
J.
,
Wagner
,
K.
,
Meßiner
,
D.
,
Grundmann
,
K.
,
Zange
,
C.
,
Koch
,
R.
, and
Pohl
,
M.
,
2005
, “
Reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in Adult Patients With Severe Brain Injury: A Comparison Study
,”
Clin. Rehabil.
,
19
(
7
), pp.
751
759
. 10.1191/0269215505cr889oa
11.
Kaya
,
T.
,
Goksel Karatepe
,
A.
,
Gunaydin
,
R.
,
Koc
,
A.
, and
Altundal Ercan
,
U.
,
2011
, “
Inter-Rater Reliability of the Modified Ashworth Scale and Modified Modified Ashworth Scale in Assessing Poststroke Elbow Flexor Spasticity
,”
Int. J. Rehabil. Res.
,
34
(
1
), pp.
59
64
. 10.1097/MRR.0b013e32833d6cdf
12.
Pandyan
,
A.
,
1999
, “
A Review of the Properties and Limitations of the Ashworth and Modified Ashworth Scales as Measures of Spasticity
,”
Clin. Rehabil.
,
13
(
5
), pp.
373
383
. 10.1191/026921599677595404
13.
Biering-Sørensen
,
F.
,
Nielsen
,
J. B.
, and
Klinge
,
K.
,
2006
, “
Spasticity-Assessment: A Review
,”
Spinal Cord
,
44
(
12
), pp.
708
722
. 10.1038/sj.sc.3101928
14.
Allison
,
S. C.
,
Abraham
,
L. D.
, and
Petersen
,
C. L.
,
1996
, “
Reliability of the Modified Ashworth Scale in the Assessment of Plantarflexor Muscle Spasticity in Patients With Traumatic Brain Injury
,”
Int. J. Rehabil. Res.
,
19
(
1
), pp.
67
78
. 10.1097/00004356-199603000-00007
15.
Blackburn
,
M.
,
van Vliet
,
P.
, and
Mockett
,
S.
,
2002
, “
Reliability of Measurements Obtained With the Modified Ashworth Scale in the Lower Extremities of People With Stroke
,”
Phys. Ther.
,
82
(
1
), pp.
25
34
. 10.1093/ptj/82.1.25
16.
Fujisawa
,
T.
,
Takagi
,
M.
,
Takahashi
,
Y.
,
Inoue
,
K.
,
Terada
,
T.
,
Kawakami
,
Y.
, and
Komeda
,
T.
,
2007
, “
Basic Research on the Upper Limb Patient Simulator
,”
2007 IEEE International Conference on Rehabilitation Robotics
,
Noordwijk, Netherlands
,
June 13–17
, pp.
48
51
.
17.
Park
,
H. S.
,
Kim
,
J.
, and
Damiano
,
D. L.
,
2012
, “
Development of a Haptic Elbow Spasticity Simulator (HESS) for Improving Accuracy and Reliability of Clinical Assessment of Spasticity
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
20
(
3
), pp.
361
370
. 10.1109/TNSRE.2012.2195330
18.
Takhashi
,
Y.
,
Komeda
,
T.
,
Koyama
,
H.
,
Yamamoto
,
S.-I.
,
Arimatsu
,
T.
,
Kawakami
,
Y.
,
Inoue
,
K.
, and
Ito
,
Y.
,
2011
, “
Development of an Upper Limb Patient Simulator for Physical Therapy Exercise
,”
2011 IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
, pp.
1
4
.
19.
Kikuchi
,
T.
,
Oda
,
K.
, and
Furusho
,
J.
,
2010
, “
Leg-Robot for Demonstration of Spastic Movements of Brain-Injured Patients With Compact Magnetorheological Fluid Clutch
,”
Adv. Robot.
,
24
(
5–6
), pp.
671
686
. 10.1163/016918610X493534
20.
Grow
,
D. I.
,
Wu
,
M.
,
Locastro
,
M. J.
,
Arora
,
S. K.
,
Bastian
,
A. J.
, and
Okamura
,
A. M.
,
2008
, “
Haptic Simulation of Elbow Joint Spasticity
,”
Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems 2008—Proceedings, Haptics
,
Reno, NV
,
March 13–14
, pp.
475
476
.
21.
Okumura
,
H.
,
Okamoto
,
S.
,
Ishikawa
,
S.
,
Isogai
,
K.
,
Yanagihara-Yamada
,
N.
,
Akiyama
,
Y.
, and
Yamada
,
Y.
,
2015
, “Exoskeleton Simulator of Impaired Ankle: Simulation of Spasticity and Clonus,”
Haptic Interaction, Lecture Notes in Electrical Engineering
, Vol.
277
,
Springer
,
Tokyo
, pp.
209
214
. 10.1007/978-4-431-55690-9_40
22.
Liang
,
J.
,
Ewoldt
,
R. H.
,
Tippett
,
S. R.
, and
Hsiao-Wecksler
,
E. T.
,
2016
, “
Design and Modeling of a Passive Hydraulic Device for Muscle Spasticity Simulation
,”
J. Med. Device.
,
10
(
2
), pp.
20954
20955
. 10.1115/1.4033247
23.
Zatsiorsky
,
V.
,
2002
,
Kinetics of Human Motion
,
Human Kinetics
,
Champaign, IL
.
24.
Haskell
,
G.
, and
Lee
,
D.
,
1996
, “
Fluid Viscous Damping as an Alternative to Base Isolation
,”
American Society of Mechanical Engineers (ASME) Pressure Vessels and Piping Conference
,
Montreal, Canada
,
July 21–26
.
25.
Lee
,
D.
, and
Taylor
,
D. P.
,
2002
, “
Viscous Damper Development and Future Trends
,”
Spec. Issue Damping Tall Build.
,
10
(
5
), pp.
311
320
.
26.
Moretto
,
H.
,
Schulze
,
M.
, and
Wagner
,
G.
,
2005
,
Silicones. Ullmann’s Encyclopedia of Industrial Chemistry
,
Wiley-VCH Verlag GmbH & Co KGaA
,
Weinheim, Germany
.
27.
Lee
,
H. M.
,
Huang
,
Y. Z.
,
Chen
,
J. J. J.
, and
Hwang
,
I. S.
,
2002
, “
Quantitative Analysis of the Velocity Related Pathophysiology of Spasticity and Rigidity in the Elbow Flexors
,”
J. Neurol. Neurosurg. Psychiatry
,
72
(
5
), pp.
621
629
. 10.1136/jnnp.72.5.621
28.
Lee
,
H. M.
,
Chen
,
J. J. J.
,
Ju
,
M. S.
,
Lin
,
C. C. K.
, and
Poon
,
P. P. W.
,
2004
, “
Validation of Portable Muscle Tone Measurement Device for Quantifying Velocity-Dependent Properties in Elbow Spasticity
,”
J. Electromyogr. Kinesiol.
,
14
(
5
), pp.
577
589
. 10.1016/j.jelekin.2004.02.002
29.
Chen
,
J. J. J.
,
Wu
,
Y. N.
,
Huang
,
S. C.
,
Lee
,
H. M.
, and
Wang
,
Y. L.
,
2005
, “
The Use of a Portable Muscle Tone Measurement Device to Measure the Effects of Botulinum Toxin Type A on Elbow Flexor Spasticity
,”
Arch. Phys. Med. Rehabil.
,
86
(
8
), pp.
1655
1660
. 10.1016/j.apmr.2005.03.019
30.
Badeer
,
H. S.
, and
Synolakis
,
C. E.
,
1989
, “
The Bernoulli-Poiseuille Equation
,”
Phys. Teach.
,
27
(
8
), pp.
598
601
. 10.1119/1.2342887
31.
Kate
,
N. B.
, and
Jadhav
,
T. A.
,
2013
, “
Mathematical Modeling of an Automobile Damper
,”
Int. J. Eng. Res.
,
471
(
7
), pp.
2319
6890
.
32.
Talbott
,
M. S.
, and
Starkey
,
J.
,
2002
, “
An Experimentally Validated Physical Model of a High-Performance Mono-Tube Damper
,”
Motorsports Engineering Conference & Exhibition
,
Warrendale, PA
.
33.
Song
,
S. Y.
,
2019
, “
Design and Evaluation of the Position, Velocity and Resistance Meter (PVRM)
,”
M.S. thesis
,
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
,
Urbana-Champaign, IL
.
34.
Song
,
S. Y.
,
Pei
,
Y.
,
Liang
,
J.
, and
Hsiao-Wecksler
,
E. T.
,
2017
, “
Design of a Portable Position, Velocity, and Resistance Meter (PVRM) for Convenient Clinical Evaluation of Spasticity or Rigidity
,”
ASME Frontiers in Biomedical Devices, 2017 Design of Medical Devices Conference
,
Minneapolis, MN
,
Apr. 10–13
, p.
V001T11A020
.
35.
Pandyan
,
A. D.
,
Price
,
C. I. M.
,
Rodgers
,
H.
,
Barnes
,
M. P.
, and
Johnson
,
G. R.
,
2001
, “
Biomechanical Examination of a Commonly Used Measure of Spasticity
,”
Clin. Biomech.
,
16
(
10
), pp.
859
865
. 10.1016/S0268-0033(01)00084-5
36.
Nam
,
H. S.
,
Koh
,
S.
,
Kim
,
Y. J.
,
Beom
,
J.
,
Lee
,
W. H.
,
Lee
,
S. U.
, and
Kim
,
S.
,
2017
, “
Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
11
), pp.
2196
2203
. 10.1109/TNSRE.2017.2714203
37.
Park
,
J. H.
,
Lee
,
K. J.
,
Yoon
,
Y. S.
,
Son
,
E. J.
,
Oh
,
J. S.
,
Kang
,
S. H.
,
Kim
,
H.
, and
Park
,
H. S.
,
2017
, “
Development of Elbow Spasticity Model for Objective Training of Spasticity Assessment of Patients Post Stroke
,”
2017 IEEE International Conference on Rehabilitation Robotics
,
London, UK
,
July 17–20
, pp.
146
151
.
38.
Lynn
,
B. O.
,
Erwin
,
A.
,
Guy
,
M.
,
Herman
,
B.
,
Davide
,
M.
,
Ellen
,
J.
,
Anne
,
C.
, and
Kaat
,
D.
,
2013
, “
Comprehensive Quantification of the Spastic Catch in Children With Cerebral Palsy
,”
Res. Dev. Disabil.
,
34
(
1
), pp.
386
396
. 10.1016/j.ridd.2012.08.019
39.
Bhadane
,
M. Y.
,
Gao
,
F.
,
Francisco
,
G. E.
,
Zhou
,
P.
, and
Li
,
S.
,
2015
, “
Correlation of Resting Elbow Angle With Spasticity in Chronic Stroke Survivors
,”
Front. Neurol.
,
6
, p.
183
. 10.3389/fneur.2015.00183
40.
Pandyan
,
A. D.
,
Price
,
C. I. M.
,
Barnes
,
M. P.
, and
Johnson
,
G. R.
,
2003
, “
A Biomechanical Investigation Into the Validity of the Modified Ashworth Scale as a Measure of Elbow Spasticity
,”
Clin. Rehabil.
,
17
(
3
), pp.
290
294
. 10.1191/0269215503cr610oa
41.
Kumar
,
R. T. S.
,
Pandyan
,
A. D.
, and
Sharma
,
A. K.
,
2006
, “
Biomechanical Measurement of Post-Stroke Spasticity
,”
Age Ageing
,
35
(
4
), pp.
371
375
. 10.1093/ageing/afj084
42.
Thibaut
,
A.
,
Chatelle
,
C.
,
Ziegler
,
E.
,
Bruno
,
M. A.
,
Laureys
,
S.
, and
Gosseries
,
O.
,
2013
, “
Spasticity After Stroke: Physiology, Assessment and Treatment
,”
Brain Inj.
,
27
(
10
), pp.
1093
1105
. 10.3109/02699052.2013.804202
You do not currently have access to this content.