Abstract

This paper introduces a minimalistic design of a monopedal robot (monobot) with C-shaped legs which can achieve multiple locomotion modes (multi-mode) such as walking, leaping, as well as backward and forward flipping. The monobot contains an actuator, speed controller, 3D-printed base frame and legs, and battery set. The weight of the whole robot is less than 80 g. Dimensional parameters are optimized to simplify the design process and to identify effective factors for locomotion. Potential locomotion modes of the robot are analyzed by dynamics simulation. A simplified virtual prototype is tested within the multibody simulation software. An experimental platform of the monobot is also developed. The speed of the platform is adjusted to verify the correspondence between the actuator speed and locomotion mode as obtained by simulation. Potential applications of the multi-mode monobot include disaster rescue, planet exploration, and reconnaissance.

References

1.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
Bigdog, the Rough-Terrain Quadruped Robot
,”
The International Federation of Automatic Control
,
Seoul, Korea
, Vol.
41
(
2
),
July 6–11
, pp.
10822
10825
.
2.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2015
, “
Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot
,”
IEEE/ASME Trans. Mechatronics
,
20
(
3
), pp.
1117
1129
. 10.1109/TMECH.2014.2339013
3.
Spröwitz
,
A.
,
Tuleu
,
A.
,
Vespignani
,
M.
,
Ajallooeian
,
M.
,
Badri
,
E.
, and
Ijspeert
,
A. J.
,
2013
, “
Towards Dynamic Trot Gait Locomotion: Design, Control, and Experiments With Cheetah-Cub, a Compliant Quadruped Robot
,”
Int. J. Rob. Res.
,
32
(
8
), pp.
932
950
. 10.1177/0278364913489205
4.
Hutter
,
M.
,
Gehring
,
C.
,
Jud
,
D.
,
Lauber
,
A.
,
Bellicoso
,
C. D.
,
Tsounis
,
V.
,
Hwangbo
,
J.
,
Bodie
,
K.
,
Fankhauser
,
P.
,
Bloesch
,
M.
,
Diethelm
,
R.
,
Bachmann
,
S.
,
Melzer
,
A.
, and
Hoepflinger
,
M.
,
2016
, “
ANYmal—A Highly Mobile and Dynamic Quadrupedal Robot
,”
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
38
44
.
5.
Semini
,
C.
,
Barasuol
,
V.
,
Goldsmith
,
J.
,
Frigerio
,
M.
,
Focchi
,
M.
,
Gao
,
Y.
, and
Caldwell
,
D. G.
,
2017
, “
Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max
,”
IEEE/ASME Trans. Mechatronics
,
22
(
2
), pp.
635
646
. 10.1109/TMECH.2016.2616284
6.
Kenneally
,
G.
,
De
,
A.
, and
Koditschek
,
D. E.
,
2016
, “
Design Principles for a Family of Direct-Drive Legged Robots
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
900
907
. 10.1109/LRA.2016.2528294
7.
Schilling
,
K.
, and
Jungius
,
C.
,
1996
, “
Mobile Robots for Planetary Exploration
,”
Control Eng. Pract.
,
4
(
4
), pp.
513
524
. 10.1016/0967-0661(96)00034-2
8.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D. E.
,
2001
, “
RHex: A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Rob. Res.
,
20
(
7
), pp.
616
631
. 10.1177/02783640122067570
9.
Prahacs
,
C.
,
Saudners
,
A.
,
Smith
,
M. K.
,
McMordie
,
D.
, and
Buehler
,
M.
,
2011
, “
Towards Legged Amphibious Mobile Robotics
,”
Proceedings of the Canadian Design Engineering Network Conference
,
McGill University
,
Montreal, QC
,
July 29–30
.
10.
Chen
,
S. C.
,
Huang
,
K. J.
,
Chen
,
W. H.
,
Shen
,
S. Y.
,
Li
,
C. H.
, and
Lin
,
P. C.
,
2014
, “
Quattroped: A Leg–Wheel Transformable Robot
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
730
742
. 10.1109/TMECH.2013.2253615
11.
Chen
,
W. H.
,
Lin
,
H. S.
, and
Lin
,
P. C.
,
2014
, “
TurboQuad: A Leg-Wheel Transformable Robot Using Bio-Inspired Control
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, p.
2090
.
12.
Morrey
,
J. M.
,
Lambrecht
,
B.
,
Horchler
,
A. D.
,
Ritzmann
,
R. E.
, and
Quinn
,
R. D.
,
2003
, “
Highly Mobile and Robust Small Quadruped Robots
,”
Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference
,
Las Vegas, NV
,
Vol. 1
,
Oct. 27–31
, pp.
82
87
.
13.
Owaki
,
D.
, and
Ishiguro
,
A.
,
2017
, “
A Quadruped Robot Exhibiting Spontaneous Gait Transitions From Walking to Trotting to Galloping
,”
Sci. Rep.
,
7
(
1
), p.
277
. 10.1038/s41598-017-00348-9
14.
Masuda
,
Y.
,
Naniwa
,
K.
,
Ishikawa
,
M.
, and
Osuka
,
K.
,
2018
, “
Weak Actuators Generate Adaptive Animal Gaits Without a Brain
,”
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Macau, China
,
Dec. 5–8
, pp.
2638
2645
.
15.
Gunther
,
F.
,
Giardina
,
F.
, and
Iida
,
F.
,
2014
, “
Self-Stable One-Legged Hopping Using a Curved Foot
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
5133
5138
.
16.
Günther
,
F.
,
Shu
,
Y.
, and
Iida
,
F.
,
2015
, “
Parallel Elastic Actuation for Efficient Large Payload Locomotion
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA, USA
,
May 26–30
, pp.
823
828
.
17.
Shahbazi
,
M.
,
Lopes
,
G. A. D.
, and
Babuska
,
R.
,
2014
, “
Automated Transitions Between Walking and Running in Legged Robots
,”
The International Federation of Automatic Control
,
Cape Town, South Africa
, Vol.
47
(
3
),
Aug. 24–29
, pp.
2171
2176
.
18.
Haldane
,
D. W.
,
Plecnik
,
M. M.
,
Yim
,
J. K.
, and
Fearing
,
R. S.
,
2016
, “
Robotic Vertical Jumping Agility via Series-Elastic Power Modulation
,”
Sci. Rob.
,
1
(
1
), p.
eaag2048
. 10.1126/scirobotics.aag2048
19.
Aydin
,
Y. O.
,
Saranli
,
A.
,
Yazicioglu
,
Y.
,
Saranli
,
U.
, and
Leblebicioğlu
,
K.
,
2014
, “
Optimal Control of a Half-Circular Compliant Legged Monopod
,”
Control Eng. Pract.
,
33
, pp.
10
21
. 10.1016/j.conengprac.2014.08.005
You do not currently have access to this content.