Abstract

We derive the snap-through solution and the governing snapping force equations for an arbitrarily preshaped beam deflected under a mid-length lateral point force. The exact solution is obtained based on the classical theory of elastic beams as a superposition of the initial shape and the modes of buckling. Two kinds of solutions are identified depending on the axial force level. The two solutions, bifurcation conditions, bistability conditions, and the snapping force equations are derived and discussed. The snap-through and snapping force solutions are then calculated for two common beam initial shapes, the curved (first buckling shape) and the inclined one (V-shape). In both cases, explicit expressions are obtained describing the snap-through behavior. The analytical modeling results show excellent agreement with finite element simulations. The comparison between the two cases shows a similar snap-through behavior qualitatively, while several differences and similarities are noticed quantitatively.

References

1.
Zirbel
,
S. A.
,
Tolman
,
K. A.
,
Trease
,
B. P.
, and
Howell
,
L. L.
,
2016
, “
Bistable Mechanisms for Space Applications
,”
PLoS One
,
11
(
12
), p.
e0168218
. 10.1371/journal.pone.0168218
2.
Ben Salem
,
M.
,
Aiche
,
G.
,
Rubbert
,
L.
,
Renaud
,
P.
, and
Haddab
,
Y.
,
2018
, “
Design of a Microbiota Sampling Capsule Using 3D-Printed Bistable Mechanism
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Honolulu, HI
,
July 17–21
, pp.
4868
4871
.
3.
Ando
,
B.
,
Baglio
,
S.
,
L’Episcopo
,
G.
, and
Trigona
,
C.
,
2012
, “
Investigation on Mechanically Bistable MEMS Devices for Energy Harvesting From Vibrations
,”
J. Microelectromech. Syst.
,
21
(
4
), pp.
779
790
. 10.1109/JMEMS.2012.2192912
4.
Vysotskyi
,
B.
,
Aubry
,
D.
,
Gaucher
,
P.
,
Le Roux
,
X.
,
Parrain
,
F.
, and
Lefeuvre
,
E.
,
2018
, “
Nonlinear Electrostatic Energy Harvester Using Compensational Springs in Gravity Field
,”
J. Micromech. Microeng.
,
28
(
7
), p.
074004
. 10.1088/1361-6439/aabc90
5.
Hajjaj
,
A. Z.
,
Jaber
,
N.
,
Ilyas
,
S.
,
Alfosail
,
F. K.
, and
Younis
,
M. I.
,
2020
, “
Linear and Nonlinear Dynamics of Micro and Nano-Resonators: Review of Recent Advances
,”
Int. J. Non. Linear. Mech.
,
119
, p.
103328
. 10.1016/j.ijnonlinmec.2019.103328
6.
Wang
,
N.
,
Cui
,
C.
,
Chen
,
B.
,
Guo
,
H.
, and
Zhang
,
X.
,
2019
, “
Design of Translational and Rotational Bistable Actuators Based on Dielectric Elastomer
,”
J. Mech. Rob.
,
11
(
4
), p.
041011
. 10.1115/1.4043602
7.
Hansen
,
B. J.
,
Carron
,
C. J.
,
Jensen
,
B. D.
,
Hawkins
,
A. R.
, and
Schultz
,
S. M.
,
2007
, “
Plastic Latching Accelerometer Based on Bistable Compliant Mechanisms
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1967
1972
. 10.1088/0964-1726/16/5/055
8.
Frangi
,
A.
,
De Masi
,
B.
,
Confalonieri
,
F.
, and
Zerbini
,
S.
,
2015
, “
Threshold Shock Sensor Based on a Bistable Mechanism: Design, Modeling, and Measurements
,”
J. Microelectromech. Syst.
,
24
(
6
), pp.
2019
2026
. 10.1109/JMEMS.2015.2462736
9.
Jaber
,
N.
,
Ilyas
,
S.
,
Shekhah
,
O.
,
Eddaoudi
,
M.
, and
Younis
,
M. I.
,
2018
, “
Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating
,”
J. Microelectromech. Syst.
,
27
(
2
), pp.
156
163
. 10.1109/JMEMS.2018.2794546
10.
Hajjaj
,
A.
,
Chappanda
,
K.
,
Batra
,
N.
,
Hafiz
,
M.
,
Costa
,
P.
, and
Younis
,
M.
,
2019
, “
Miniature Pressure Sensor Based on Suspended MWCNT
,”
Sens. Actuators, A
,
292
, pp.
11
16
. 10.1016/j.sna.2019.03.036
11.
Kessler
,
Y.
,
Ilic
,
B. R.
,
Krylov
,
S.
, and
Liberzon
,
A.
,
2018
, “
Flow Sensor Based on the Snap-Through Detection of a Curved Micromechanical Beam
,”
J. Microelectromech. Syst.
,
27
(
6
), pp.
945
947
. 10.1109/JMEMS.2018.2868776
12.
Truong
,
Q.-D.
,
Tran
,
N.-D.-K.
, and
Wang
,
D.-A.
,
2017
, “
Design and Characterization of a Mouse Trap Based on a Bistable Mechanism
,”
Sens. Actuators, A
,
267
, pp.
360
375
. 10.1016/j.sna.2017.10.040
13.
Du
,
H.
,
Chau
,
F. S.
, and
Zhou
,
G.
,
2018
, “
Harmonically-Driven Snapping of a Micromachined Bistable Mechanism With Ultra-Small Actuation Stroke
,”
J. Microelectromech. Syst.
,
27
(
1
), pp.
34
39
. 10.1109/JMEMS.2017.2785331
14.
Qiu
,
J.
,
Lang
,
J. H.
,
Slocum
,
A. H.
, and
Weber
,
A. C.
,
2005
, “
A Bulk-Micromachined Bistable Relay With U-Shaped Thermal Actuators
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
1099
1109
. 10.1109/JMEMS.2005.856676
15.
Gomm
,
T.
,
Howell
,
L. L.
, and
Selfridge
,
R. H.
,
2002
, “
In-Plane Linear Displacement Bistable Microrelay
,”
J. Micromech. Microeng.
,
12
(
3
), pp.
257
264
. 10.1088/0960-1317/12/3/310
16.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
,
2008
, “
Bistable Nanowire for Micromechanical Memory
,”
J. Micromech. Microeng.
,
18
(
4
), p.
045005
. 10.1088/0960-1317/18/4/045005
17.
Hafiz
,
M. A. A.
,
Kosuru
,
L.
, and
Younis
,
M. I.
,
2016
, “
Microelectromechanical Reprogrammable Logic Device
,”
Nat. Commun.
,
7
(
1
), p.
11137
. 10.1038/ncomms11137
18.
Alfattani
,
R.
, and
Lusk
,
C.
,
2018
, “
A Lamina-Emergent Frustum Using a Bistable Collapsible Compliant Mechanism
,”
J. Mech. Des.
,
140
(
12
), p.
125001
. 10.1115/1.4037621
19.
Chen
,
G.
, and
Zhang
,
S.
,
2011
, “
Fully-Compliant Statically-Balanced Mechanisms Without Prestressing Assembly: Concepts and Case Studies
,”
Mech. Sci.
,
2
(
2
), pp.
169
174
. 10.5194/ms-2-169-2011
20.
Rafsanjani
,
A.
,
Bertoldi
,
K.
, and
Studart
,
A. R.
,
2019
, “
Programming Soft Robots With Flexible Mechanical Metamaterials
,”
Science Robotics
,
4
(
29
), p.
eaav7874
. 10.1126/scirobotics.aav7874
21.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
J. Mech. Rob.
,
9
(
1
), p.
011006
. 10.1115/1.4035220
22.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
. 10.1016/j.mechmachtheory.2017.08.017
23.
Sönmez
,
U.
, and
Tutum
,
C. C.
,
2008
, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
J. Mech. Des.
,
130
(
4
), p.
042304
. 10.1115/1.2839009
24.
Wilcox
,
D.
, and
Howell
,
L.
,
2005
, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
. 10.1109/JMEMS.2005.859089
25.
Masters
,
N.
, and
Howell
,
L.
,
2003
, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
(
3
), pp.
273
280
. 10.1109/JMEMS.2003.811751
26.
Hwang
,
I.-H.
,
Shim
,
Y.-S.
, and
Lee
,
J.-H.
,
2003
, “
Modeling and Experimental Characterization of the Chevron-Type Bi-Stable Microactuator
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
948
954
. 10.1088/0960-1317/13/6/318
27.
Chen
,
G.
,
Han
,
Q.
, and
Jin
,
K.
,
2020
, “
A Fully Compliant Tristable Mechanism Employing Both Tensural and Compresural Segments
,”
J. Mech. Rob.
,
12
(
1
), p.
011003
. 10.1115/1.4044736
28.
Hussein
,
H.
,
Bouhadda
,
I.
,
Mohand-Ousaid
,
A.
,
Bourbon
,
G.
,
Le Moal
,
P.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2018
, “
Design and Fabrication of Novel Discrete Actuators for Microrobotic Tasks
,”
Sens. Actuators, A
,
271
, pp.
373
382
. 10.1016/j.sna.2017.12.065
29.
Zanaty
,
M.
,
Vardi
,
I.
, and
Henein
,
S.
,
2018
, “
Programmable Multistable Mechanisms: Synthesis and Modeling
,”
J. Mech. Des.
,
140
(
4
), p.
042301
. 10.1115/1.4038926
30.
Che
,
K.
,
Yuan
,
C.
,
Wu
,
J.
,
Jerry Qi
,
H.
, and
Meaud
,
J.
,
2016
, “
Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence
,”
J. Appl. Mech.
,
84
(
1
), p.
011004
. 10.1115/1.4034706
31.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
J. Mech. Des.
,
133
(
8
), p.
081007
. 10.1115/1.4004543
32.
Chalvet
,
V.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2013
, “
A Microfabricated Planar Digital Microrobot for Precise Positioning Based on Bistable Modules
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
641
649
. 10.1109/TRO.2013.2240174
33.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators A
,
69
(
3
), pp.
212
216
. 10.1016/S0924-4247(98)00097-1
34.
Alkharabsheh
,
S. A.
, and
Younis
,
M. I.
,
2013
, “
Statics and Dynamics of Mems Arches Under Axial Forces
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021007
. 10.1115/1.4023055
35.
Camescasse
,
B.
,
Fernandes
,
A.
, and
Pouget
,
J.
,
2013
, “
Bistable Buckled Beam: Elastica Modeling and Analysis of Static Actuation
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2881
2893
. 10.1016/j.ijsolstr.2013.05.005
36.
Gerson
,
Y.
,
Krylov
,
S.
, and
Ilic
,
B.
,
2010
, “
Electrothermal Bistability Tuning in a Large Displacement Micro Actuator
,”
J. Micromech. Microeng.
,
20
(
11
), p.
112001
. 10.1088/0960-1317/20/11/112001
37.
Michael
,
A.
,
Kwok
,
C. Y.
,
Yu
,
K.
, and
Mackenzie
,
M. R.
,
2008
, “
A Novel Bistable Two-Way Actuated Out-of-Plane Electrothermal Microbridge
,”
J. Microelectromech. Syst.
,
17
(
1
), pp.
58
69
. 10.1109/JMEMS.2007.911369
38.
Chiao
,
M.
, and
Lin
,
L.
,
2000
, “
Self-Buckling of Micromachined Beams Under Resistive Heating
,”
J. Microelectromech. Syst.
,
9
(
1
), pp.
146
151
. 10.1109/84.825789
39.
Lorenzoni
,
M.
,
Llobet
,
J.
, and
Perez-Murano
,
F.
,
2018
, “
Study of Buckling Behavior at the Nanoscale Through Capillary Adhesion Force
,”
Appl. Phys. Lett.
,
112
(
19
), p.
193102
. 10.1063/1.5026474
40.
Pane
,
I. Z.
, and
Asano
,
T.
,
2008
, “
Investigation on Bistability and Fabrication of Bistable Prestressed Curved Beam
,”
Jpn. J. Appl. Phys.
,
47
(
6
), pp.
5291
5296
. 10.1143/JJAP.47.5291
41.
Fang
,
W.
, and
Wickert
,
J. A.
,
1994
, “
Post Buckling of Micromachined Beams
,”
J. Micromech. Microeng.
,
4
(
3
), pp.
116
122
. 10.1088/0960-1317/4/3/004
42.
Tajaddodianfar
,
F.
,
Pishkenari
,
H. N.
,
Yazdi
,
M. R. H.
, and
Miandoab
,
E. M.
,
2015
, “
Size-Dependent Bistability of an Electrostatically Actuated Arch NEMS Based on Strain Gradient Theory
,”
J. Phys. D. Appl. Phys.
,
48
(
24
), p.
245503
. 10.1088/0022-3727/48/24/245503
43.
Krylov
,
S.
,
Ilic
,
B. R.
, and
Lulinsky
,
S.
,
2011
, “
Bistability of Curved Microbeams Actuated by Fringing Electrostatic Fields
,”
Nonlinear Dyn.
,
66
(
3
), pp.
403
426
. 10.1007/s11071-011-0038-y
44.
Qiu
,
J.
,
Lang
,
J.
, and
Slocum
,
A.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
. 10.1109/JMEMS.2004.825308
45.
Hussein
,
H.
,
Le Moal
,
P.
,
Younes
,
R.
,
Bourbon
,
G.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2019
, “
On the Design of a Preshaped Curved Beam Bistable Mechanism
,”
Mech. Mach. Theory
,
131
, pp.
204
217
. 10.1016/j.mechmachtheory.2018.09.024
46.
Park
,
S.
, and
Hah
,
D.
,
2008
, “
Pre-Shaped Buckled-Beam Actuators: Theory and Experiments
,”
Sens. Actuators A
,
148
(
1
), pp.
186
192
. 10.1016/j.sna.2008.07.009
47.
Aimmanee
,
S.
, and
Tichakorn
,
K.
,
2018
, “
Piezoelectrically Induced Snap-Through Buckling in a Buckled Beam Bonded With a Segmented Actuator
,”
J. Intell. Mater. Syst. Struct.
,
29
(
9
), pp.
1862
1874
. 10.1177/1045389X17754270
48.
Camescasse
,
B.
,
Fernandes
,
A.
, and
Pouget
,
J.
,
2014
, “
Bistable Buckled Beam and Force Actuation: Experimental Validations
,”
Int. J. Solids Struct.
,
51
(
9
), pp.
1750
1757
. 10.1016/j.ijsolstr.2014.01.017
49.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
,
2009
, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
J. Mech. Des.
,
131
(
10
), p.
101001
. 10.1115/1.3179003
50.
Chen
,
Q.
,
Zhang
,
X.
,
Zhang
,
H.
,
Zhu
,
B.
, and
Chen
,
B.
,
2019
, “
Topology Optimization of Bistable Mechanisms With Maximized Differences Between Switching Forces in Forward and Backward Direction
,”
Mech. Mach. Theory
,
139
, pp.
131
143
. 10.1016/j.mechmachtheory.2019.04.012
51.
Gao
,
R.
,
Li
,
M.
,
Wang
,
Q.
,
Zhao
,
J.
, and
Liu
,
S.
,
2018
, “
A Novel Design Method of Bistable Structures With Required Snap-Through Properties
,”
Sens. Actuators, A
,
272
, pp.
295
300
. 10.1016/j.sna.2017.12.019
52.
Huang
,
Y.
,
Zhao
,
J.
, and
Liu
,
S.
,
2016
, “
Design Optimization of Segment-Reinforced Bistable Mechanisms Exhibiting Adjustable Snapping Behavior
,”
Sens. Actuators, A
,
252
, pp.
7
15
. 10.1016/j.sna.2016.10.014
53.
Tran
,
N. D. K.
, and
Wang
,
D.-A.
,
2017
, “
Design of a Crab-Like Bistable Mechanism for Nearly Equal Switching Forces in Forward and Backward Directions
,”
Mech. Mach. Theory
,
115
, pp.
114
129
. 10.1016/j.mechmachtheory.2017.05.005
54.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2018
, “
Design of Buckling-Induced Mechanical Metamaterials for Energy Absorption Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
58
(
4
), pp.
1395
1410
. 10.1007/s00158-018-1970-y
55.
Hussein
,
H.
,
Le Moal
,
P.
,
Bourbon
,
G.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2015
, “
Modeling and Stress Analysis of a Pre-Shaped Curved Beam: Influence of High Modes of Buckling
,”
Int. J. Appl. Mech.
,
7
(
4
), p.
1550055
. 10.1142/S1758825115500556
56.
Williams
,
M. D.
,
van Keulen
,
F.
, and
Sheplak
,
M.
,
2012
, “
Modeling of Initially Curved Beam Structures for Design of Multistable MEMS
,”
J. Appl. Mech.
,
79
(
1
), p.
011006
. 10.1115/1.4004711
57.
Palathingal
,
S.
, and
Ananthasuresh
,
G. K.
,
2019
, “
Analysis and Design of Fixed–Fixed Bistable Arch-Profiles Using a Bilateral Relationship
,”
J. Mech. Rob.
,
11
(
3
), p.
031002
. 10.1115/1.4043044
58.
Zhao
,
J.
,
Jia
,
J.
,
He
,
X.
, and
Wang
,
H.
,
2008
, “
Post-Buckling and Snap-Through Behavior of Inclined Slender Beams
,”
J. Appl. Mech.
,
75
(
4
), p.
041020
. 10.1115/1.2870953
59.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
J. Mech. Rob.
,
5
(
2
), p.
021006
. 10.1115/1.4023558
60.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
J. Mech. Des.
,
133
(
5
), p.
051002
. 10.1115/1.4003922
61.
Kim
,
C.
,
2011
, “
Curve Decomposition Analysis for Fixed-Guided Beams With Application to Statically Balanced Compliant Mechanisms
,”
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, WA
,
Aug. 28–31
, pp.
149
158
.
62.
Chen
,
G.
, and
Ma
,
F.
,
2014
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
J. Mech. Des.
,
137
(
2
), p.
022301
. 10.1115/1.4029024
63.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
J. Mech. Des.
,
129
(
6
), p.
625
. 10.1115/1.2717231
64.
Ma
,
F.
, and
Chen
,
G.
,
2017
, “
Bi-BCM: A Closed-Form Solution for Fixed-Guided Beams in Compliant Mechanisms
,”
J. Mech. Rob.
,
9
(
1
), p.
014501
. 10.1115/1.4035084
65.
Chen
,
G.
,
Ma
,
F.
,
Hao
,
G.
, and
Zhu
,
W.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam Constraint Model
,”
J. Mech. Rob.
,
11
(
1
), p.
011002
. 10.1115/1.4041585
66.
Nayfeh
,
A. H.
, and
Emam
,
S. A.
,
2008
, “
Exact Solution and Stability of Postbuckling Configurations of Beams
,”
Nonlinear Dyn.
,
54
(
4
), pp.
395
408
. 10.1007/s11071-008-9338-2
You do not currently have access to this content.