Abstract

Dielectric elastomers (DEs) exhibit remarkable properties that make them stand out among other electroactive polymers. Various types of actuators based on DEs have been used in applications that include artificial muscles, Braille displays, and robotic joints. In particular, conical dielectric elastomer actuators (CDEAs) are very attractive due to their multiple degrees of freedom (DOF) and easiness of construction. In this study, an energy method is used to derive an improved mathematical model for a double-cone dielectric elastomer actuator (DCDEA) capable of predicting horizontal and rotational displacements. To create the model, a new variable is introduced into the equations, the azimuth angle. In addition, a new pattern of electrodes is proposed as a method for achieving five DOF using only half of the electrode connections of traditional DCDEAs. Experimental tests are carried out and used to validate the proposed model. Results show very close agreement. A limiting aspect of the proposed model is that it relies on two experimental correction coefficients. Nonetheless, the model derived provides a means to more accurately implement automatic control to robotic systems that use DCDEAs (work in progress).

References

1.
Bar-Cohen
,
Y.
,
2004
,
Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges
, Vol.
136
,
SPIE Press
,
Bellingham, WA
.
2.
Pelrine
,
R.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100
,”
Science
,
287
(
5454
), pp.
836
839
. 10.1126/science.287.5454.836
3.
Madden
,
J. D.
,
Vandesteeg
,
N. A.
,
Anquetil
,
P. A.
,
Madden
,
P. G.
,
Takshi
,
A.
,
Pytel
,
R. Z.
,
Lafontaine
,
S. R.
,
Wieringa
,
P. A.
, and
Hunter
,
I. W.
,
2004
, “
Artificial Muscle Technology: Physical Principles and Naval Prospects
,”
IEEE J. Oceanic Engin.
,
29
(
3
), pp.
706
728
. 10.1109/JOE.2004.833135
4.
Branz
,
F.
, and
Francesconi
,
A.
,
2016
, “
Modelling and Control of Double-Cone Dielectric Elastomer Actuator
,”
Smart Mater. Struct.
,
25
(
9
), p.
095040
. 10.1088/0964-1726/25/9/095040
5.
Ghazali
,
F. A. M.
,
Mah
,
C. K.
,
AbuZaiter
,
A.
,
Chee
,
P. S.
, and
Ali
,
M. S. M.
,
2017
, “
Soft Dielectric Elastomer Actuator Micropump
,”
Sens. Actuators A.
,
263
, pp.
276
284
. 10.1016/j.sna.2017.06.018
6.
Mirvakili
,
S. M.
, and
Hunter
,
I. W.
,
2018
, “
Artificial Muscles: Mechanisms, Applications, and Challenges
,”
Adv. Mater.
,
30
(
6
), p.
1704407
. 10.1002/adma.201704407
7.
Shian
,
S.
,
Diebold
,
R. M.
, and
Clarke
,
D. R.
,
2013
, “
Tunable Lenses Using Transparent Dielectric Elastomer Actuators
,”
Optics Express
,
21
(
7
), pp.
8669
8676
. 10.1364/OE.21.008669
8.
Shian
,
S.
,
Bertoldi
,
K.
, and
Clarke
,
D. R.
,
2015
, “
Dielectric Elastomer Based ‘Grippers’ for Soft Robotics
,”
Adv. Mater.
,
27
(
43
), pp.
6814
6819
. 10.1002/adma.201503078
9.
Giousouf
,
M.
, and
Kovacs
,
G.
,
2013
, “
Dielectric Elastomer Actuators Used for Pneumatic Valve Technology
,”
Smart Mater. Struct.
,
22
(
10
), p.
104010
. 10.1088/0964-1726/22/10/104010
10.
Nguyen
,
C. T.
,
Phung
,
H.
,
Nguyen
,
T. D.
,
Lee
,
C.
,
Kim
,
U.
,
Lee
,
D.
,
Moon
,
H.
,
Koo
,
J.
, and
Choi
,
H. R.
,
2014
, “
A Small Biomimetic Quadruped Robot Driven by Multistacked Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
23
(
6
), p.
065005
. 10.1088/0964-1726/23/6/065005
11.
McCoul
,
D.
, and
Pei
,
Q.
,
2015
, “
Tubular Dielectric Elastomer Actuator for Active Fluidic Control
,”
Smart Mater. Struct.
,
24
(
10
), p.
105016
. 10.1088/0964-1726/24/10/105016
12.
Romasanta
,
L. J.
,
López-Manchado
,
M. A.
, and
Verdejo
,
R.
,
2015
, “
Increasing the Performance of Dielectric Elastomer Actuators: A Review From the Materials Perspective
,”
Prog. Polym. Sci.
,
51
, pp.
188
211
. 10.1016/j.progpolymsci.2015.08.002
13.
Moretti
,
G.
,
Righi
,
M.
,
Vertechy
,
R.
, and
Fontana
,
M.
,
2017
, “
Fabrication and Test of an Inflated Circular Diaphragm Dielectric Elastomer Generator Based on PDMS Rubber Composite
,”
Polymers
,
9
(
7
), p.
283
. 10.3390/polym9070283
14.
Zhang
,
W.
,
Ahmed
,
S.
,
Masters
,
S.
,
Ounaies
,
Z.
, and
Frecker
,
M.
,
2017
, “
Finite Element Analysis of Electroactive Polymer and Magnetoactive Elastomer Based Actuation for Origami Folding
,”
Smart Mater. Struct.
,
26
(
10
), p.
105032
. 10.1088/1361-665X/aa7a82
15.
Li
,
Z.
,
Sheng
,
M.
,
Minqing
,
W.
,
Pengfei
,
D.
,
Li
,
B.
, and
Chen
,
H.
,
2018
, “
Stacked Dielectric Elastomer Actuator (SDEA): Casting Process, Modeling and Active Vibration Isolation
,”,
Smart Mater. Struct.
,
27
(
7
), p.
75023
. 10.1088/1361-665x/aabea5
16.
Carpi
,
F.
,
Migliore
,
A.
,
Serra
,
G.
, and
De Rossi
,
D.
,
2005
, “
Helical Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
14
(
6
), p.
1210
. 10.1088/0964-1726/14/6/014
17.
Zhang
,
R.
,
Kunz
,
A.
,
Lochmatter
,
P.
, and
Kovacs
,
G.
,
2006
, “
Dielectric Elastomer Spring Roll Actuators for a Portable Force Feedback Device
,”
2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Alexandria, VA
,
Mar. 25–26
, pp.
347
353
.
18.
He
,
T.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Dielectric Elastomer Membranes Undergoing Inhomogeneous Deformation
,”
J. Appl. Phys.
,
106
(
8
), p.
083522
. 10.1063/1.3253322
19.
Nguyen
,
C. T.
,
Phung
,
H.
,
Nguyen
,
T. D.
,
Jung
,
H.
, and
Choi
,
H. R.
,
2017
, “
Multiple-Degrees-of-Freedom Dielectric Elastomer Actuators for Soft Printable Hexapod Robot
,”
Sens. Actuators A.
,
267
, pp.
505
516
. 10.1016/j.sna.2017.10.010
20.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sinica
,
23
(
6
), pp.
549
578
. 10.1016/S0894-9166(11)60004-9
21.
Gent
,
A.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber. Chem. Technol.
,
69
(
1
), pp.
59
61
. 10.5254/1.3538357
You do not currently have access to this content.