Abstract

Origami-based flexible, compliant, and bio-inspired robots are believed to permit a range of medical applications within confined environments. In this article, we experimentally demonstrated an origami-inspired deployable surgical retractor with the controllable stiffness mechanism that can facilitate safer instrument–tissue interaction in comparison to their rigid counterparts. When controllable negative-pressure is applied to the jammed origami retractor module, it becomes more rigid, increasing its strength. To quantify origami-modules strength further, we demonstrated performances of retractor based on the Daler–Rowney Canford paper (38 grams per square meter (gsm)) and sandpaper of 1000 grit. Experiments on the proposed retractor prototype elucidated sandpaper-based retractor can outperform paper-38-gsm retractor for facelift incision with the width of more than 9 cm. Though 38 gsm Canford paper comprised of thin layers, 16 times lesser in thickness than sandpaper, experiments proved its comparable layer jamming (LJ) performance. We leverage the advantage of the LJ mechanism to tune retractor stiffness, allowing the instrument to hold and separate a facelift incision to mitigate the likelihood of surgical complications. The retractor is equipped with a custom-made printed conductive ink-based fabric piezoresistive tactile sensor to assist clinicians with tissue-retractor interaction force information. The proposed sensor showed a linear relationship with the applied force and has a sensitivity of 0.833 N−1. Finally, cadaver experiments exhibit an effective origami-inspired surgical retractor for assisting surgeons and clinicians in the near future.

References

References
1.
Bhatia
,
P.
,
Mohamed
,
H. E.
,
Kadi
,
A.
,
Kandil
,
E.
, and
Walvekar
,
R. R.
,
2015
, “
Remote Access Thyroid Surgery
,”
Gland Surg.
,
4
(
5
), p.
376
.
2.
Terris
,
D. J.
, and
Singer
,
M. C.
,
2012
, “
Robotic Facelift Thyroidectomy: Facilitating Remote Access Surgery
,”
Head Neck
,
34
(
5
), pp.
746
747
. 10.1002/hed.22978
3.
Kandil
,
E. H.
,
Noureldine
,
S. I.
,
Yao
,
L.
, and
Slakey
,
D. P.
,
2012
, “
Robotic Transaxillary Thyroidectomy: An Examination of the First One Hundred Cases
,”
J. Am. Coll. Surgeons
,
214
(
4
), pp.
558
564
. 10.1016/j.jamcollsurg.2012.01.002
4.
Byeon
,
H. K.
,
Kim
,
D. H.
,
Chang
,
J. W.
,
Ban
,
M. J.
,
Park
,
J. H.
,
Kim
,
W. S.
,
Choi
,
E. C.
, and
Koh
,
Y. W.
,
2016
, “
Comprehensive Application of Robotic Retroauricular Thyroidectomy: The Evolution of Robotic Thyroidectomy
,”
Laryngoscope
,
126
(
8
), pp.
1952
1957
. 10.1002/lary.25763
5.
Richmon
,
J. D.
,
Holsinger
,
F. C.
,
Kandil
,
E.
,
Moore
,
M. W.
,
Garcia
,
J. A.
, and
Tufano
,
R. P.
,
2011
, “
Transoral Robotic-Assisted Thyroidectomy With Central Neck Dissection: Preclinical Cadaver Feasibility Study and Proposed Surgical Technique
,”
J. Rob. Surg.
,
5
(
4
), pp.
279
282
. 10.1007/s11701-011-0287-2
6.
Li
,
Z.
,
Wu
,
L.
,
Ren
,
H.
, and
Yu
,
H.
,
2017
, “
Kinematic Comparison of Surgical Tendon-Driven Manipulators and Concentric Tube Manipulators
,”
Mech. Mach. Theory
,
107
, pp.
148
165
. 10.1016/j.mechmachtheory.2016.09.018
7.
Sun
,
Y.
,
Song
,
S.
,
Liang
,
X.
, and
Ren
,
H.
,
2016
, “
A Miniature Soft Robotic Manipulator Based on Novel Fabrication Methods
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
617
623
. 10.1109/LRA.2016.2521889
8.
Ohgami
,
M.
,
Ishii
,
S.
,
Arisawa
,
Y.
,
Ohmori
,
T.
,
Noga
,
K.
,
Furukawa
,
T.
, and
Kitajima
,
M.
,
2000
, “
Scarless Endoscopic Thyroidectomy: Breast Approach for Better Cosmesis
,”
Surg. Laparosc. Endosc. Percutaneous Tech.
,
10
(
1
), pp.
1
4
. 10.1097/00019509-200002000-00001
9.
Shimizu
,
K.
,
2001
, “
Minimally Invasive Thyroid Surgery
,”
Best Pract. Res. Clin. Endocrinol. Metab.
,
15
(
2
), pp.
123
137
. 10.1053/beem.2001.0130
10.
Banerjee
,
H.
,
Tse
,
Z. T. H.
, and
Ren
,
H.
,
2018
, “
Soft Robotics With Compliance and Adaptation for Biomedical Applications and Forthcoming Challenges
,”
Int. J. Rob. Autom.
,
33
(
1
), pp.
69
80
.
11.
Banerjee
,
H.
,
Aaron
,
O. Y. W.
,
Yeow
,
B. S.
, and
Ren
,
H.
,
2018
, “
Fabrication and Initial Cadaveric Trials of Bi-Directional Soft Hydrogel Robotic Benders Aiming for Biocompatible Robot-Tissue Interactions
,”
2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM), Singapore
,
July 18–20
, IEEE,
Silver Spring, MD
, pp.
630
635
.
12.
Timon
,
C.
, and
Rafferty
,
M.
,
2008
, “
Minimally Invasive Video-Assisted Thyroidectomy (MIVAT): Technique, Advantages, and Disadvantages
,”
Operative Tech. Otolaryngol.-Head Neck Surg.
,
19
(
1
), pp.
8
14
. 10.1016/j.otot.2008.02.001
13.
Singer
,
M. C.
,
Seybt
,
M. W.
, and
Terris
,
D. J.
,
2011
, “
Robotic Facelift Thyroidectomy: I. Preclinical Simulation and Morphometric Assessment
,”
Laryngoscope
,
121
(
8
), pp.
1631
1635
. 10.1002/lary.21831
14.
Terris
,
D. J.
,
Singer
,
M. C.
, and
Seybt
,
M. W.
,
2011
, “
Robotic Facelift Thyroidectomy: II. Clinical Feasibility and Safety
,”
Laryngoscope
,
121
(
8
), pp.
1636
1641
. 10.1002/lary.21832
15.
Bonutti
,
P. M.
,
1998
,
Arthroscopic Retractors and method of Using the Same, Feb. 10. U.S. Patent 5,716,325
.
16.
Lee
,
J.
, and
Chung
,
W. Y.
,
2013
, “
Robotic Surgery for Thyroid Disease
,”
Eur. Thyroid J.
,
2
(
2
), pp.
93
101
.
17.
White
,
L. C.
,
Singer
,
M. C.
, and
Terris
,
D. J.
,
2013
, “
Robotic Facelift Thyroidectomy
,”
Operative Tech. Otolaryngol.-Head Neck Surg.
,
24
(
2
), pp.
120
125
. 10.1016/j.otot.2013.04.007
18.
Pearl
,
C. B.
,
Aguillon
,
A.
,
McLaughlin
,
E.
, and
Yu
,
J.
,
2003
, “
Inexpensive Self-Retaining Retractor for Minor Surgical Procedures
,”
Ann. Plast. Surg.
,
51
(
6
), pp.
633
635
. 10.1097/01.SAP.0000096148.73798.06
19.
Bolotin
,
G.
,
Buckner
,
G. D.
,
Jardine
,
N. J.
,
Kiefer
,
A. J.
,
Campbell
,
N. B.
,
Kocherginsky
,
M.
,
Raman
,
J.
, and
Jeevanandam
,
V.
,
2007
, “
A Novel Instrumented Retractor to Monitor Tissue-Disruptive Forces During Lateral Thoracotomy
,”
J. Thoracic Cardiovasc. Surg.
,
133
(
4
), pp.
949
954
. 10.1016/j.jtcvs.2006.09.065
20.
Banerjee
,
H.
, and
Ren
,
H.
,
2018
, “Electromagnetically Responsive Soft-Flexible Robots and Sensors for Biomedical Applications and Impending Challenges,”
Electromagnetic Actuation and Sensing in Medical Robotics
,
Springer
,
Berlin
, pp.
43
72
.
21.
Prituja
,
A.
,
Banerjee
,
H.
, and
Ren
,
H.
,
2018
, “
Electromagnetically Enhanced Soft and Flexible Bend Sensor: A Quantitative Analysis With Different Cores
,”
IEEE Sens. J.
,
18
(
9
), pp.
3580
3589
. 10.1109/JSEN.2018.2817211
22.
Banerjee
,
H.
,
Ponraj
,
G.
,
Kirthika
,
S. K.
,
Suman
,
M. V.
,
Lim
,
C. M.
, and
Ren
,
H.
,
2019
, “
Hydrogel-Shielded Soft Tactile Sensor for Biocompatible Drug Delivery Monitoring
,”
ASME J. Med. Devices
,
13
(
4
), p.
044503
. 10.1115/1.4044114
23.
Blanc
,
L.
,
Delchambre
,
A.
, and
Lambert
,
P.
,
2017
, “Flexible Medical Devices: Review of Controllable Stiffness Solutions,”
Actuators
, Vol.
6
,
Multidisciplinary Digital Publishing Institute
, p.
23
.
24.
Banerjee
,
H.
,
Kakde
,
S.
, and
Ren
,
H.
,
2018
, “
Orumbot: Origami-Based Deformable Robot Inspired by an Umbrella Structure
,”
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia
,
Dec. 12–15
, IEEE,
Silver Spring, MD
, pp.
910
915
.
25.
Cianchetti
,
M.
,
Laschi
,
C.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2018
, “
Biomedical Applications of Soft Robotics
,”
Nat. Rev. Mater.
,
3
(
6
), p.
143
. 10.1038/s41578-018-0022-y
26.
Johnson
,
M.
,
Chen
,
Y.
,
Hovet
,
S.
,
Xu
,
S.
,
Wood
,
B.
,
Ren
,
H.
,
Tokuda
,
J.
, and
Tse
,
Z. T. H.
,
2017
, “
Fabricating Biomedical Origami: a State-of-the-Art Review
,”
Int. J. Comput. Assisted Radiol. Surg.
,
12
(
11
), pp.
2023
2032
. 10.1007/s11548-017-1545-1
27.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Preliminary Design and Performance Test of Tendon-Driven Origami-Inspired Soft Peristaltic Robot
,”
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia
,
Dec. 12–15
, IEEE,
Silver Spring, MD
, pp.
1214
1219
.
28.
Wu
,
L.
,
Yang
,
X.
,
Chen
,
K.
, and
Ren
,
H.
,
2015
, “
A Minimal Poe-Based Model for Robotic Kinematic Calibration With Only Position Measurements
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
2
), pp.
758
763
. 10.1109/TASE.2014.2328652
29.
Banerjee
,
H.
,
Suhail
,
M.
, and
Ren
,
H.
,
2018
, “
Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview With Impending Challenges
,”
Biomimetics
,
3
(
3
), p.
15
. 10.3390/biomimetics3030015
30.
Nadeau
,
C.
,
Ren
,
H.
,
Krupa
,
A.
, and
Dupont
,
P. E.
,
2015
, “
Intensity-Based Visual Servoing for Instrument and Tissue Tracking in 3D Ultrasound Volumes
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
1
), pp.
367
371
. 10.1109/TASE.2014.2343652
31.
Song
,
S.
,
Li
,
Z.
,
Ren
,
H.
, and
Yu
,
H.
,
2015
, “
Shape Reconstruction for Wire-Driven Flexible Robots Based on Bezier Curve and Electromagnetic Positioning
,”
Mechatronics
,
29
(
99
), pp.
28
35
. 10.1016/j.mechatronics.2015.05.003
32.
Ren
,
H.
,
Vasilyev
,
N. V.
, and
Dupont
,
P. E.
,
2011
, “
Detection of Curved Robots Using 3D Ultrasound
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA
,
Sept. 25–30
, IEEE,
Silver Spring, MD
, pp.
2083
2089
.
33.
Paik
,
J. K.
,
Kramer
,
R. K.
, and
Wood
,
R. J.
,
2011
, “
Stretchable Circuits and Sensors for Robotic Origami
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA
,
Sept. 25–30
, IEEE,
Silver Spring, MD
, pp.
414
420
.
34.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci. U.S.A
,
107
(
28
), pp.
12441
12445
. 10.1073/pnas.0914069107
35.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
. 10.1126/science.1252610
36.
Firouzeh
,
A.
,
Sun
,
Y.
,
Lee
,
H.
, and
Paik
,
J.
,
2013
, “
Sensor and Actuator Integrated Low-Profile Robotic Origami
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan
,
Nov. 3–7
, IEEE,
Silver Spring, MD
, pp.
4937
4944
.
37.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
064501
. 10.1115/1.4041200
38.
Ponraj
,
G.
,
Kirthika
,
S. K.
,
Lim
,
C. M.
, and
Ren
,
H.
,
2018
, “
Soft Tactile Sensors With Inkjet-Printing Conductivity and Hydrogel Biocompatibility for Retractors in Cadaveric Surgical Trials
,”
IEEE Sens. J.
,
18
(
23
), pp.
9840
9847
. 10.1109/JSEN.2018.2871242
39.
Banerjee
,
H.
, and
Ren
,
H.
,
2017
, “
Optimizing Double-Network Hydrogel for Biomedical Soft Robots
,”
Soft Rob.
,
4
(
3
), pp.
191
201
. 10.1089/soro.2016.0059
40.
Kalairaj
,
M. S.
,
Banerjee
,
H.
,
Lim
,
C. M.
,
Chen
,
P. -Y.
, and
Ren
,
H.
,
2019
, “
Hydrogel-Matrix Encapsulated Nitinol Actuation With Self-Cooling Mechanism
,”
RSC Adv.
,
9
(
59
), p.
34244
. 10.1039/C9RA05360C
41.
Li
,
S.
,
Vogt
,
D. M.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2017
, “
Fluid-Driven Origami-Inspired Artificial Muscles
,”
Proc. Natl. Acad. Sci. U.S.A
,
114
(
50
), pp.
13132
13137
. 10.1073/pnas.1713450114
You do not currently have access to this content.