Abstract

In response to the ever-increasing demand of community-based rehabilitation, a novel smart rehab walker iReGo is designed to facilitate the lower limb rehabilitation training based on motion intention recognition. The proposed walker provides a number of passive degrees-of-freedom (DoFs) to the pelvis that are used to smooth the hip rotations in such a way that the natural gait is not significantly affected, meanwhile, three actuated DoFs are actively controlled to assist patients with mobility disabilities. The walker first identifies the user’s motion intention from the interaction forces in both left and right sides of the pelvis and then uses the kinematic model to generate appropriate driving velocities to support the body weight and improve mobility. In this paper, workspace, dexterity, and the force field of the walker are analyzed based on the system Jacobian. Simulation and experiments with healthy subjects are carried out to verify the effectiveness and tip-over stability. These results demonstrate that the walker has sufficient workspace for pelvic motions, satisfactory dexterity, and near-linear force feedback within the prescribed workspace, and that the walker is easily controlled to ensure normal gait.

References

1.
Walter
,
J.
,
Oyere
,
O.
,
Mayowa
,
O.
, and
Sonal
,
S.
,
2016
, “
Stroke: A Global Response Is Needed
,”
Bull. World Health Organ.
,
94
(
9
), pp.
634
634A
. 10.2471/BLT.16.181636
2.
Batchelor
,
F.
,
Hill
,
K.
,
Mackintosh
,
S.
, and
Said
,
C.
,
2010
, “
What Works in Falls Prevention After Stroke?
,”
Stroke
,
41
(
8
), pp.
1715
1722
. 10.1161/STROKEAHA.109.570390
3.
Martins
,
M. M.
,
Santos
,
C. P.
,
Frizera-Neto
,
A.
, and
Ceres
,
R.
,
2012
, “
Assistive Mobility Devices Focusing on Smart Walkers: Classification and Review
,”
Rob. Autom. Syst.
,
60
(
4
), pp.
548
562
. 10.1016/j.robot.2011.11.015
4.
Kubo
,
K.
,
Miyoshi
,
T.
,
Kanai
,
A.
, and
Terashima
,
K.
,
2011
, “
Gait Rehabilitation Device in Central Nervous System Disease: A Review
,”
J. Rob.
,
2011
, pp.
1
14
. 10.1155/2011/348207
5.
Martins
,
M.
,
Santos
,
C.
,
Frizera
,
A.
, and
Ceres
,
R.
,
2015
, “
A Review of the Functionalities of Smart Walkers
,”
Med. Eng. Phys.
,
37
(
10
), pp.
917
928
. 10.1016/j.medengphy.2015.07.006
6.
Constantinescu
,
R.
,
Leonard
,
C.
,
Deeley
,
C.
, and
Kurlan
,
R.
,
2007
, “
Assistive Devices for Gait in Parkinson’s Disease
,”
Parkinsonism Relat. Disord.
,
13
(
3
), pp.
133
138
. 10.1016/j.parkreldis.2006.05.034
7.
Postolache
,
O.
,
Pereira
,
J. M. D.
,
Viegas
,
V.
,
Pedro
,
L.
,
Girão
,
P. S.
,
Oliveira
,
R.
, and
Postolache
,
G.
,
2015
, “
Smart Walker Solutions for Physical Rehabilitation
,”
IEEE Instrum. Meas. Mag.
,
18
(
5
), pp.
21
30
. 10.1109/MIM.2015.7271223
8.
Annicchiarico
,
R.
,
Barrué
,
C.
,
Benedico
,
T.
,
Campana
,
F.
,
Cortés
,
U.
, and
Martínez-Velasco
,
A.
,
2008
, “
The i-Walker: An Intelligent Pedestrian Mobility Aid
,”
18th European Conference on Artificial Intelligence
,
Berlin
,
Jul. 21–25
,
Springer
, pp.
708
712
.
9.
Zhao
,
P.
,
Zhu
,
L.
,
Zi
,
B.
, and
Li
,
X.
,
2019
, “
Design of Planar 1-DOF Cam-Linkages for Lower-Limb Rehabilitation Via Kinematic-Mapping Motion Synthesis Framework
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041006
. 10.1115/1.4043459
10.
Hsieh
,
Y. H.
,
Young
,
K. Y.
, and
Ko
,
C. H.
,
2015
, “
Effective Maneuver for Passive Robot Walking Helper Based on User Intention
,”
IEEE Trans. Ind. Electron.
,
62
(
10
), pp.
6404
6416
. 10.1109/TIE.2015.2416679
11.
She
,
Y.
,
Su
,
H.
,
Meng
,
D.
, and
Lai
,
C.
,
2019
, “
Design and Modeling of a Continuously Tunable Stiffness Arm for Safe Physical Human–Robot Interaction
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011006
. 10.1115/1.4044840
12.
Neto
,
A. F.
,
Gallego
,
J. A.
,
Rocon
,
E.
,
Pons
,
J. L.
, and
Ceres
,
R.
,
2010
, “
Extraction of User’s Navigation Commands From Upper Body Force Interaction in Walker Assisted Gait
,”
Biomed. Eng. Online
,
9
(
1
), p.
37
. 10.1186/1475-925X-9-37
13.
Dubowsky
,
S.
,
Genot
,
F.
,
Godding
,
S.
,
Kozono
,
H.
,
Skwersky
,
A.
,
Yu
,
H.
, and
Yu
,
L. S.
,
2000
, “
PAMM—A Robotic Aid to the Elderly for Mobility Assistance and Monitoring
,”
IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 24–28
, pp.
570
576
.
14.
Hirata
,
Y.
,
Hara
,
A.
, and
Kosuge
,
K.
,
2007
, “
Motion Control of Passive Intelligent Walker Using Servo Brakes
,”
IEEE Trans. Rob.
,
23
(
5
), pp.
981
990
. 10.1109/TRO.2007.906252
15.
Huang
,
J.
,
Huo
,
W.
,
Xu
,
W.
,
Mohammed
,
S.
, and
Amirat
,
Y.
,
2015
, “
Control of Upper-Limb Power-Assist Exoskeleton Using a Human–Robot Interface Based on Motion Intention Recognition
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
4
), pp.
1257
1270
. 10.1109/TASE.2015.2466634
16.
Martins
,
M.
,
Santos
,
C.
,
Frizera
,
A.
, and
Ceres
,
R.
,
2014
, “
Real Time Control of the ASBGo Walker Through a Physical Human–Robot Interface
,”
Measurement
,
48
(
2
), pp.
77
86
. 10.1016/j.measurement.2013.10.031
17.
Wakita
,
K.
,
Huang
,
J.
,
Di
,
P.
,
Sekiyama
,
K.
, and
Fukuda
,
T.
,
2013
, “
Human-Walking-Intention-Based Motion Control of an Omnidirectional-Type Cane Robot
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
285
296
. 10.1109/TMECH.2011.2169980
18.
Luu
,
T. P.
,
Low
,
K. H.
,
Qu
,
X.
,
Lim
,
H. B.
, and
Hoon
,
K. H.
,
2014
, “
Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits
,”
IEEE J. Trans. Eng. Health Med.
,
2
(
2100209
), pp.
1
9
. 10.1109/JTEHM.2014.2303807
19.
Lee
,
G.
,
Ohnuma
,
T.
,
Chong
,
N. Y.
, and
Lee
,
S. G.
,
2014
, “
Walking Intent-Based Movement Control for JAIST Active Robotic Walker
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
44
(
5
), pp.
665
672
. 10.1109/TSMC.2013.2270225
20.
Matjačić
,
Z.
,
Zadravec
,
M.
,
Goljar
,
N.
, and
Olenšek
,
A.
,
2017
, “
Dynamic Balance Assessment During Pathological Bipedal Walking
,”
3rd International Conference on NeuroRehabilitation (ICNR)
,
Segovia
,
Oct. 18–21
, pp.
1389
1392
.
21.
Bizovičar
,
N.
,
Matjačić
,
Z.
,
Stanonik
,
I.
, and
Goljar
,
N.
,
2017
, “
Overground Gait Training Using a Motorized Assistive Device in Patients With Severe Disabilities After Stroke
,”
Int. J. Rehabil. Res.
,
40
(
1
), pp.
46
52
. 10.1097/MRR.0000000000000199
22.
Munawar
,
H.
, and
Patoglu
,
V.
,
2016
, “
GRAVITY-ASSIST: A Series Elastic Body Weight Support System With Inertia Compensation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon
,
Oct. 9–14
, pp.
3036
3041
.
23.
Fabara
,
E.
,
O’Brien
,
A.
,
Vergara-Diaz
,
G.
,
Adans-Dester
,
C.
, and
Bonato
,
P.
,
2016
, “
Usability of a New Over-Ground Bodyweight Support Device (Andago® 2.0) for Gait Training
,”
Arch. Phys. Med. Rehabil.
,
97
(
10
), p.
e134
. 10.1016/j.apmr.2016.08.416
24.
Luu
,
T. P.
,
Lim
,
H. B.
,
Qu
,
X.
, and
Low
,
K. H.
,
2011
, “
Pelvic Motion Assistance of NaTUre-Gaits With Adaptive Body Weight Support
,”
8th Asian Control Conference (ASCC)
,
Kaohsiung
,
May 15–18
, pp.
950
955
.
25.
Morbi
,
A.
,
2014
, “
Design, Control, and Implementation of a Robotic Gait Rehabilitation System for Overground Gait Training
,”
Ph.D. thesis
,
Carleton University
,
Ottawa, Canada
. https://curve.carleton.ca/system/files/
26.
Zijlstra
,
W.
, and
Hof
,
A. L.
,
1997
, “
Displacement of the Pelvis During Human Walking: Experimental Data and Model Predictions
,”
Gait Posture
,
6
(
3
), pp.
249
262
. 10.1016/S0966-6362(97)00021-0
27.
Mokhtarian
,
A.
,
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2013
, “
An Assistive Passive Pelvic Device for Gait Training and Rehabilitation Using Locomotion Dynamic Model
,”
Indian J. Sci. Technol.
,
6
(
3
), pp.
4168
4181
.
28.
Whittle
,
M. W.
, and
Levine
,
D.
,
1999
, “
Three-Dimensional Relationships Between the Movements of the Pelvis and Lumbar Spine During Normal Gait
,”
Hum. Mov. Sci.
,
18
(
5
), pp.
681
692
. 10.1016/s0167-9457(99)00032-9
29.
Watanabe
,
T.
,
Ohki
,
E.
,
Ando
,
T.
, and
Fujie
,
M. G.
,
2009
, “
Fundamental Study of Force Control Method for Pelvis-Supporting Body Weight Support System
,”
IEEE International Conference on Robotics and Biomimetics
,
Bangkok
,
Feb. 22–25
, pp.
1403
1408
.
30.
Wang
,
G.
,
Yan
,
J.
, and
Liu
,
Y.
,
2010
, “
The Spatial-Temporal Parameters and Kinematics Analysis of Stroke Hemiplegic Gait
,”
Chin. J. Rehabil. Med.
,
25
(
12
), pp.
1148
1151
. 10.3969/j.issn.1001-1242.2010.12.006
31.
Seidler
,
R. D.
,
Kwak
,
Y.
,
Fling
,
B. W.
, and
Bernard
,
J. A.
,
2013
, “
Neurocognitive Mechanisms of Error-Based Motor Learning
,”
Adv. Exp. Med. Biol.
,
782
, pp.
39
60
. 10.1007/978-1-4614-5465-6_3
32.
Ji
,
J.
,
Song
,
T.
,
Guo
,
S.
,
Xi
,
F.
, and
Wu
,
H.
,
2018
, “
Robotic Assisted Rehabilitation Trainer Improves Balance Function in Stroke Survivors
,”
IEEE Trans. Cognit. Dev. Syst
. 10.1109/TCDS.2018.2883653
33.
Ji
,
J.
,
Guo
,
S.
, and
Xi
,
J.
,
2018
, “
Dynamic Modeling and Optimization of a Fall Prevention Device Using Genetic Algorithm
,”
3rd International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Singapore
,
July 18–20
, pp.
66
71
.
34.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Chen
,
Y.
,
2013
, “
Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041003
. 10.1115/1.4024736
35.
Kim
,
S. H.
, and
Reed
,
K. B.
,
2013
, “
Robot-Assisted Balance Training for Gait Modification
,”
IEEE 13th International Conference on Rehabilitation Robotics (ICORR)
,
Seattle, WA
,
Jun. 24–26
, pp.
1
4
.
36.
Wu
,
M.
,
Brown
,
G.
, and
Gordon
,
K. E.
,
2017
, “
Control of Locomotor Stability in Stabilizing and Destabilizing Environments
,”
Gait Posture
,
55
, pp.
191
198
. 10.1016/j.gaitpost.2017.04.021
37.
Zhang
,
D.
,
Xi
,
F.
,
Mechefske
,
C. M.
, and
Lang
,
S. Y.
,
2004
, “
Analysis of Parallel Kinematic Machine With Kinetostatic Modelling Method
,”
Rob. Comput. Integr. Manuf.
,
20
(
2
), pp.
151
165
. 10.1016/j.rcim.2003.08.005
38.
Porges
,
O.
,
Lampariello
,
R.
,
Artigas
,
J.
,
Wedler
,
A.
,
Borst
,
C.
, and
Roa
,
M. A.
,
2015
, “
Reachability and Dexterity: Analysis and Applications for Space Robotics
,”
Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA)
,
Noordwijk
,
May 11–13
, pp.
1
7
.
39.
Herzfeld
,
D. J.
,
Vaswani
,
P. A.
,
Marko
,
M.
, and
Shadmehr
,
R.
,
2014
, “
A Memory of Errors in Sensorimotor Learning
,”
Science
,
345
(
6202
), pp.
1349
1353
. 10.1126/science.1253138
40.
Guo
,
S.
,
Song
,
T.
,
Xi
,
F. J.
, and
Mohamed
,
R. P.
,
2017
, “
Tip-Over Stability Analysis for a Wheeled Mobile Manipulator
,”
ASME J. Dyn. Syst. Meas. Contr.
,
139
(
5
), p.
054501
. 10.1115/1.4035234
41.
Perry
,
J.
,
Thorofare
,
K. S.
, and
Davids
,
J. R.
,
1992
, “
Gait Analysis: Normal and Pathological Function
,”
J. Pediatr. Orthop.
,
12
(
6
), p.
815
.
42.
Matevž
,
B.
, and
Igor
,
Š.
,
2017
, “
Embedded Control System for Smart Walking Assistance Device
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
3
), pp.
205
214
. 10.1109/TNSRE.2016.2553369
You do not currently have access to this content.