Abstract

In the dimension synthesis of the spatial linkages, the geometric characteristics of floating links in mechanisms reveal the geometric relationship between the motion task and the dimensions of the mechanisms. In order to establish the kinematic geometry rules corresponding to the motion of the floating link, this paper transforms the kinematic problems of geometric elements on the floating link into geometric problems and uses the geometric procedure to solve the spatial linkages synthesis problem with four given positions. In a previous work, we have extracted the kinematic geometry rules of a line with two and three positions. However, as the number of task positions increases, the kinematic characteristics representing the position transformation become more complicated. The method proposed in this paper extends the previous work to four given positions and builds up the geometric relationships among the kinematic rules for two, three, and four positions. The establishment of this geometric relationship is helpful to unify the synthesis procedure of synthesis problems with different number of positions. After that, the two-plane projection system and the transformation of projection are introduced to establish a procedural graphical synthesis method.

References

1.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
2.
Lee
,
E.
, and
Mavroidis
,
C.
,
2002
, “
Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
652
661
. 10.1115/1.1515796
3.
Bai
,
S.
, and
Angeles
,
J.
,
2012
, “
A Robust Solution of the Spatial Burmester Problem
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031003
. 10.1115/1.4006658
4.
Bai
,
S.
, and
Angeles
,
J.
,
2015
, “
Synthesis of RCCC Linkages to Visit Four Given Poses
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031004
. 10.1115/1.4028637
5.
Lin
,
S.
,
Liu
,
J.
,
Zhang
,
Y.
, and
Wang
,
H.
,
2017
, “
Displacement Analysis of Foldable V-Polyhedra Based on Dual Quaternions
,”
ASME J. Mech. Des.
,
139
(
9
), p.
094501
. 10.1115/1.4037110
6.
Wang
,
D.
, and
Wang
,
W.
,
2015
,
Kinematic Differential Geometry and Saddle Synthesis of Linkages
,
John Wiley & Sons
,
Singapore
.
7.
Li
,
X.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2017
, “
A Unified Approach to Exact and Approximate Motion Synthesis of Spherical Four-Bar Linkages via Kinematic Mapping
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011003
. 10.1115/1.4038305
8.
Cervantes-Sánchez
,
J. J.
,
Gracia
,
L.
,
Alba-Ruiz
,
E.
, and
Rico-Martínez
,
J. M.
,
2011
, “
Synthesis of a Special RPSPR Spatial Linkage Function Generator for Six Precision Points
,”
Mech. Mach. Theory
,
46
(
2
), pp.
83
96
. 10.1016/j.mechmachtheory.2010.10.006
9.
Alizade
,
R. I.
, and
Kilit
,
Ö
,
2005
, “
Analytical Synthesis of Function Generating Spherical Four-Bar Mechanism for the Five Precision Points
,”
Mech. Mach. Theory
,
40
(
7
), pp.
863
878
. 10.1016/j.mechmachtheory.2004.12.010
10.
Shen
,
Q.
,
Russell
,
K.
,
Lee
,
W. T.
, and
Sodhi
,
R. S.
,
2011
, “
On Cam System Design to Replicate Spatial Four-Bar Mechanism Coupler Motion
,”
Inverse Prob. Sci. Eng.
,
19
(
2
), pp.
251
265
. 10.1080/17415977.2010.550047
11.
D’Alessio
,
J.
,
Russell
,
K.
,
Lee
,
W. T.
, and
Sodhi
,
R. S.
,
2017
, “
On the Application of Rrss Motion Generation and RRSS Axode Generation for the Design of a Concept Prosthetic Knee
,”
Mech. Based Des. Struct. Mach.
,
45
(
3
), pp.
406
414
. 10.1080/15397734.2016.1218289
12.
Hrones
,
J. A.
,
Nelson
,
G. L.
,
Hrones
,
J. A.
, and
Nelson
,
G. L.
,
1951
,
Analysis of the Four-Bar Linkage
,
MIT Press and Wiley
,
New York
.
13.
Hoeltzel
,
D. A.
, and
Chieng
,
W. H.
,
1990
, “
Pattern Matching Synthesis as an Automated Approach to Mechanism Design
,”
ASME J. Mech. Des.
,
112
(
2
), pp.
190
199
. 10.1115/1.2912592
14.
McGarva
,
J. R.
,
1994
, “
Rapid Search and Selection of Path Generating Mechanisms From a Library
,”
Mech. Mach. Theory
,
29
(
2
), pp.
223
235
. 10.1016/0094-114X(94)90032-9
15.
Mullineux
,
G.
,
2011
, “
Atlas of Spherical Four-Bar Mechanisms
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1811
1823
. 10.1016/j.mechmachtheory.2011.06.001
16.
Liu
,
W.
,
Sun
,
J.
,
Zhang
,
B.
, and
Chu
,
J.
,
2018
, “
A Novel Synthesis Method for Nonperiodic Function Generation of an RCCC Mechanism
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
034502
. 10.1115/1.4039497
17.
Ceccarelli
,
M.
, and
Koetsier
,
T.
,
2006
, “
Burmester and Allievi: A Theory and its Application for Mechanism Design at the End of 19th Century
,”
ASME J. Mech. Des.
,
130
(
7
), pp.
291
300
.
18.
Bagci
,
C.
,
1984
, “
Geometric Methods for the Synthesis of Spherical Mechanisms for the Generation of Functions, Paths and Rigid-Body Positions Using Conformal Projections
,”
Mech. Mach. Theory
,
19
(
1
), pp.
113
127
. 10.1016/0094-114X(84)90013-2
19.
Lakshminarayana
,
K.
, and
Rao
,
L. B.
,
1984
, “
Graphical Synthesis of the RSSR Crank-Rocker Mechanism
,”
Mech. Mach. Theory
,
19
(
3
), pp.
331
336
. 10.1016/0094-114X(84)90067-3
20.
Liang
,
Z.
,
1995
, “
Computer-Aided Graphical Design of Spatial Mechanisms
,”
Mech. Mach. Theory
,
30
(
2
), pp.
299
312
. 10.1016/0094-114X(94)00036-K
21.
Lin
,
S.
,
Wang
,
H.
,
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
Geometric Method of Spatial Linkages Synthesis for Function Generation With Three Finite Positions
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082303
. 10.1115/1.4040171
22.
Shen
,
C.
, and
Hang
,
L.
,
2018
, “
Synthesis of a Type of Self-Motion Mechanisms and the Dimensional Characteristic of Ratio Based on the Construction of Cognates
,”
J. Mech. Eng.
,
54
(
19
), pp.
41
48
. 10.3901/JME.2018.19.041
You do not currently have access to this content.