Abstract
The shape of a vertex roof is defined by the geometry of its constituent flat facets and the relative angle of folding across them. The spherical image of the roof, originally from Gauss, expresses these properties simultaneously. We present a method for calculating the image properties and thence the shape of any vertex roof based on subdividing the image into an array of suitable spherical triangles. In particular, we introduce a truss representation of the vertex for choosing viable subdivisions of the image, which allow full calculations to be made. Additionally, this allows us to construct generalized closed-form expressions for the fold angles of vertex roofs, presented here for roofs with up to six facets.
Issue Section:
Research Papers
Topics:
Roofs
References
1.
Gauss
, K. F.
, 1828
, “Disquistiones generales circa superficies curvas
,” Typis Dieterichianis
, Gottingae
. [English Translation 1902
, “General Investigations of Curved Surfaces
” by Morehead
J. C.
and Hiltebeitel
A. M.
, Princeton].2.
McNeel
, R.
, 2018
, Rhinoceros, Verison 5
, Robert McNeel & Associates
, Seattle, WA
.3.
McNeel
, R.
, 2014
, Grasshopper, Build 0.9.0076
, Robert McNeel & Associates
, Seattle, WA
.4.
Schenk
, M.
, Viquerat
, A. D.
, Seffen
, K. A.
, and Guest
, S. D.
, 2014
, “Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidizatio
,” J. Spacecraft Rockets
, 51
(3
), pp. 762
–778
. 10.2514/1.A325985.
Schenk
, M.
, and Guest
, S. D.
, 2011
, Origami 5
, Vol. 1
, CRC Press
, Boca Raton, FL
, pp. 291
–303
.6.
Wei
, G.
, and Dai
, J. S.
, 2014
, “Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,” ASME J. Mech. Des.
, 136
(5
), p. 051003
. 10.1115/1.40258217.
Calladine
, C. R.
, 1983
, Theory of Shell Structures
, Cambridge University Press
, Cambridge
.8.
Seffen
, K. A.
, 2016
, “Fundamental Conical Defects: The D-Cone, Its E-Cone, and Its P-Cone
,” Phys. Rev. E
, 94
(1
), pp. 1
–8
. 10.1103/PhysRevE.94.0130029.
Huffman
, D. A.
, 1976
, “Curvature and Creases: A Primer on Paper
,” IEEE Trans. Comput.
, 10
(10
), pp. 1010
–1019
. 10.1109/TC.1976.167454210.
Zwillinger
, D.
, 1986
, CRC Standard Mathematrical Tables and Formulae
, CRC Press
, Boca Raton
.11.
Chiang
, C. H.
, 1988
, Kinematics of Spherical Mechanisms
, Cambridge University Press
, Cambridge
.12.
Mathworks
, 2014
MATLAB 2016a
, The Mathworks, Inc
, Natick, Massachusetts
.13.
Lang
, R. J.
, Magleby
, S.
, and Howell
, L.
, 2016
, “Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers
,” J. Mech. Robot.
, 8
(3
), p. 031005
. 10.1115/1.403210214.
Maxwell
, J. C.
, 1863
, “On the Calculation of the Equilibrium and Stiffness of Frames
,” Philos. Mag.
, 27
(182
), pp. 294
–299
. 10.1080/1478644640864366815.
Sloane
, N. J. A.
, 2018
, “The On-line Encyclopedia of Integer Sequences: Sequence a000011
,” https://oeis.org/A00001116.
Eatough
, D. T.
, and Seffen
, K. A.
, 2018
, “Spherical Image Analysis for Folding Templates
,” Proceedings of the Seventh International Meeting on Origami Science, Mathematics, and Education
, Oxford
, September
, Vol. 4
, pp. 1059
–1067
.Copyright © 2020 by ASME
You do not currently have access to this content.