Abstract

The shape of a vertex roof is defined by the geometry of its constituent flat facets and the relative angle of folding across them. The spherical image of the roof, originally from Gauss, expresses these properties simultaneously. We present a method for calculating the image properties and thence the shape of any vertex roof based on subdividing the image into an array of suitable spherical triangles. In particular, we introduce a truss representation of the vertex for choosing viable subdivisions of the image, which allow full calculations to be made. Additionally, this allows us to construct generalized closed-form expressions for the fold angles of vertex roofs, presented here for roofs with up to six facets.

References

1.
Gauss
,
K. F.
,
1828
, “
Disquistiones generales circa superficies curvas
,”
Typis Dieterichianis
,
Gottingae
. [
English Translation 1902
, “
General Investigations of Curved Surfaces
” by
Morehead
J. C.
and
Hiltebeitel
A. M.
, Princeton].
2.
McNeel
,
R.
,
2018
,
Rhinoceros, Verison 5
,
Robert McNeel & Associates
,
Seattle, WA
.
3.
McNeel
,
R.
,
2014
,
Grasshopper, Build 0.9.0076
,
Robert McNeel & Associates
,
Seattle, WA
.
4.
Schenk
,
M.
,
Viquerat
,
A. D.
,
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2014
, “
Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidizatio
,”
J. Spacecraft Rockets
,
51
(
3
), pp.
762
778
. 10.2514/1.A32598
5.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
,
Origami 5
, Vol.
1
,
CRC Press
,
Boca Raton, FL
, pp.
291
303
.
6.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
. 10.1115/1.4025821
7.
Calladine
,
C. R.
,
1983
,
Theory of Shell Structures
,
Cambridge University Press
,
Cambridge
.
8.
Seffen
,
K. A.
,
2016
, “
Fundamental Conical Defects: The D-Cone, Its E-Cone, and Its P-Cone
,”
Phys. Rev. E
,
94
(
1
), pp.
1
8
. 10.1103/PhysRevE.94.013002
9.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
10
(
10
), pp.
1010
1019
. 10.1109/TC.1976.1674542
10.
Zwillinger
,
D.
,
1986
,
CRC Standard Mathematrical Tables and Formulae
,
CRC Press
,
Boca Raton
.
11.
Chiang
,
C. H.
,
1988
,
Kinematics of Spherical Mechanisms
,
Cambridge University Press
,
Cambridge
.
12.
Mathworks
,
2014
MATLAB 2016a
,
The Mathworks, Inc
,
Natick, Massachusetts
.
13.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2016
, “
Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers
,”
J. Mech. Robot.
,
8
(
3
), p.
031005
. 10.1115/1.4032102
14.
Maxwell
,
J. C.
,
1863
, “
On the Calculation of the Equilibrium and Stiffness of Frames
,”
Philos. Mag.
,
27
(
182
), pp.
294
299
. 10.1080/14786446408643668
15.
Sloane
,
N. J. A.
,
2018
, “
The On-line Encyclopedia of Integer Sequences: Sequence a000011
,” https://oeis.org/A000011
16.
Eatough
,
D. T.
, and
Seffen
,
K. A.
,
2018
, “
Spherical Image Analysis for Folding Templates
,”
Proceedings of the Seventh International Meeting on Origami Science, Mathematics, and Education
,
Oxford
,
September
, Vol.
4
, pp.
1059
1067
.
You do not currently have access to this content.