Abstract

Binary logic gates are building blocks of computing machines, in particular, electronic computers. One variant is the programable logic gate, also known as the reconfigurable logic gate, in which the logical function implemented can be modified. In this paper, we construct a mechanism to implement a reconfigurable logic gate. This mechanism is based on the concept of programable multistable mechanisms which we introduced in previous work. The application of a programable multistable mechanism is superior to the different bistable mechanisms previously used to implement logic gates since a single mechanism can be used to implement several logic functions. Our reconfigurable logic gates use a novel geometric construction where the geometric data depend on the stability behavior of the mechanism. There are 16 binary logic gates and our construction can theoretically produce nine of these and our physical model produces six logical gates. Input and output of the mechanism are displacement and the mechanisms can be combined serially, i.e., output of a mechanism is an input for another. We show that we can implement nor and nand gates, so combinations of our mechanism can express any logical function. The mechanism is therefore theoretically universal, i.e., implement any computation. We give an analytic model of the mechanism based on Euler–Bernoulli beam theory to find the geometric data, then validate it using finite element analysis and experimental demonstration.

References

1.
Mano
,
M. M.
,
1991
,
Digital Design
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Henein
,
S.
,
Spanoudakis
,
P.
,
Droz
,
S.
,
Myklebust
,
L. I.
, and
Onillon
,
E.
,
2003
, “
Flexure Pivot for Aerospace Mechanisms
,”
10th European Space Mechanisms and Tribology Symposium (ESMATS)
,
San Sebastian, Spain
,
Sept. 24–26
, pp.
285
288
.
3.
Henein
,
S.
,
Spanoudakis
,
P.
,
Schwab
,
P.
,
Giriens
,
L.
,
Lisowski
,
L.
,
Onillon
,
E.
, and
Myklebust
,
L. I.
,
2004
, “
Mechanical Slit Mask Mechanism for the James Webb Space Telescope Spectrometer
,”
Proc. SPIE 5487 Optical, Infrared, and Millimeter Space Telescopes
,
Glasgow, UK
,
Oct. 12
, Vol. 5487, International Society for Optics and Photonics, pp.
765
776
. http://dx.doi.org/10.1117/12.551106
4.
Merkle
,
R. C.
,
1993
, “
Two Types of Mechanical Reversible Logic
,”
Nanotechnology
,
4
(
2
), p.
114
. 10.1088/0957-4484/4/2/007
5.
Hafiz
,
M.
,
Kosuru
,
L.
, and
Younis
,
M. I.
,
2016
, “
Microelectromechanical Reprogrammable Logic Device
,”
Nat. Commun.
,
7
(
1
), pp.
1
9
. 10.1038/ncomms11137
6.
Jiang
,
Y.
,
Korpas
,
L. M.
, and
Raney
,
J. R.
,
2019
, “
Bifurcation-Based Embodied Logic and Autonomous Actuation
,”
Nat. Commun.
,
10
(
1
), p.
128
. 10.1038/s41467-018-08055-3
7.
Song
,
Y.
,
Panas
,
R. M.
,
Chizari
,
S.
,
Shaw
,
L. A.
,
Jackson
,
J. A.
,
Hopkins
,
J. B.
, and
Pascall
,
A. J.
,
2019
, “
Additively Manufacturable Micro-Mechanical Logic Gates
,”
Nat. Commun.
,
10
(
1
), p.
882
. 10.1038/s41467-019-08678-0
8.
Henein
,
S.
,
Cosandier
,
F.
,
Rubbert
,
L.
, and
Richard
,
K.
,
2017
,
The Art of Flexure Mechanism Design
,
EPFL Press
,
Lausanne, Switzerland
.
9.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
10.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
. 10.1109/JMEMS.2004.825308
11.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021002
. 10.1115/1.3013316
12.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2003
, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
701
708
. 10.1115/1.1625399
13.
Jensen
,
B.
,
Howell
,
L.
, and
Salmon
,
L.
,
1999
, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
416
423
. 10.1115/1.2829477
14.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
657
666
. 10.1115/1.1760776
15.
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2005
, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
. 10.1109/JMEMS.2005.859089
16.
Zanaty
,
M.
,
Vardi
,
I.
, and
Henein
,
S.
,
2018
, “
Programmable Multistable Mechanisms: Synthesis and Modeling
,”
ASME J. Mech. Des.
,
140
(
4
), p.
042301
. 10.1115/1.4038926
17.
Zanaty
,
M.
, and
Henein
,
S.
,
2018
, “
Experimental Characterization of a T-Shaped Programmable Multistable Mechanism
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092301
. 10.1115/1.4040173
18.
Zanaty
,
M.
,
Fussinger
,
T.
,
Rogg
,
A.
,
Lovera
,
A.
,
Lambelet
,
D.
,
Vardi
,
I.
,
Wolfensberger
,
T. J.
,
Baur
,
C.
, and
Henein
,
S.
,
2019
, “
Programmable Multistable Mechanisms for Safe Surgical Puncturing
,”
ASME J. Med. Dev.
,
13
(
2
), p.
021002
. 10.1115/1.4043016
19.
Raney
,
J. R.
,
Nadkarni
,
N.
,
Daraio
,
C.
,
Kochmann
,
D. M.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2016
, “
Stable Propagation of Mechanical Signals in Soft Media Using Stored Elastic Energy
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
35
), pp.
9722
9727
. 10.1073/pnas.1604838113
20.
Henein
,
S.
,
2001
,
Conception des guidages flexibles
,
PPUR presses polytechniques
,
Lausanne, Switzerland
.
You do not currently have access to this content.