Abstract

Active origami structures usually have creases made with soft and compliant plates because it is difficult to fabricate real hinges and actuate them. However, most conventional origami modeling techniques fail to capture these compliant creases and simplify them as concentrated rotational springs, which neglects torsional and extensional deformations of the creases. In this paper, an improved formulation of a bar and hinge model is proposed to explicitly capture the geometry and the flexibility of compliant creases with nonnegligible width in an origami, and the model is verified against finite element simulations. The verification shows that the model performs relatively well despite being simple and computationally inexpensive. Moreover, simulation examples demonstrate that the proposed model can capture the bistable behavior of the compliant crease origami with nonnegligible crease width because it explicitly includes the extensional stretching energy into the simulation framework and allows torsional crease deformations.

References

References
1.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci.
,
112
(
40
), pp.
12321
12326
. 10.1073/pnas.1509465112
2.
Faber
,
J.
,
Arrieta
,
A. F.
, and
Studart
,
A. R.
,
2018
, “
Bioinspired Spring Origami
,”
Science
,
359
(
6382
), pp.
1386
1391
. 10.1126/science.aap7753
3.
Yasuda
,
H.
,
Tachi
,
T.
,
Lee
,
M.
, and
Yang
,
J.
,
2017
, “
Origami-Based Tunable Truss structures for Non-Volatile Mechanical Memory Operation
,”
Nat. Commun.
,
8
(
1
), p.
962
. 10.1038/s41467-017-00670-w
4.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1376
1384
. 10.1002/adfm.201102978
5.
Lv
,
C.
,
Krishnaraju
,
D.
,
Konjevod
,
G.
,
Yu
,
H.
, and
Jiang
,
H.
,
2014
, “
Origami Based Mechanical Metamaterials
,”
Sci. Rep.
,
4
(
5979
), pp.
1
6
. 10.1038/srep05979
6.
Fang
,
H.
,
Chu
,
S.-C. A.
,
Xia
,
Y.
, and
Wang
,
K.-W.
,
2018
, “
Programmable Self-Locking Origami Mechanical Metamaterials
,”
Adv. Mater.
,
30
(
15
), p.
1706311
. 10.1002/adma.201706311
7.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Origami 4
,
Lang
,
R. J.
, ed.,
Caltech, Pasadena, CA
,
Dec. 8–10, 2015
,
CRC Press
,
Boca Raton, FL
, pp.
175
187
.
8.
Tachi
,
T.
,
Domingo
,
A.
, and
Lazaro
,
C.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
Proceedings of IASS Symposium
,
Universidad Politecnica de Valencia, Spain
,
Sept. 28–Oct. 2
, pp.
2287
2294
.
9.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
(
1
), pp.
26
45
. 10.1016/j.ijsolstr.2017.05.028
10.
Liu
,
K.
, and
Paulino
,
G.
,
2017
, “
Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach
,”
Proc. R. Soc. A
,
473
(
2206
), p.
20170348
. 10.1098/rspa.2017.0348
11.
Kawasaki
,
T.
, and
Yoshida
,
M.
,
1988
, “
Crystallographic Flat Origamis
,”
Mem. Faculty Sci., Kyushu Univ.
,
42
(
2
), pp.
153
157
. 10.2206/kyushumfs.42.153
12.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium
,
Shanghai, China
,
Nov. 8–12
, pp.
458
460
.
13.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Gudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
. 10.1103/PhysRevLett.110.215501
14.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
PNAS
,
110
(
9
), pp.
3276
3281
. 10.1073/pnas.1217998110
15.
Liu
,
K.
, and
Paulino
,
G.
,
2018
, “
Highly Efficient Structural Analysis of Origami Assemblages Using the Merlin2 Software
,”
Origami 7, the 7th International Meeting on Origami in Science, Mathematics and Education (7OSME)
,
Oxford, UK
,
Sept. 5–7
, pp.
1167
1182
.
16.
Na
,
J.-H.
,
Evans
,
A. A.
,
Bae
,
J.
,
Chiappelli
,
M. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hull
,
T. C.
, and
Hayward
,
R. C.
,
2015
, “
Programming Reversibly Self-Folding Origami With Micropatterned Photo-Crosslinkable Polymer Trilayers
,”
Adv. Mater.
,
27
(
1
), pp.
79
85
. 10.1002/adma.201403510
17.
Bassik
,
N.
,
Stern
,
G. M.
, and
Gracias
,
D. H.
,
2009
, “
Microassembly Based on Hands Free Origami With Bidirectional Curvature
,”
Appl. Phys. Lett.
,
95
(
9
), p.
091901
. 10.1063/1.3212896
18.
Mao
,
Y.
,
Yu
,
K.
,
Isakov
,
M. S.
,
Wu
,
J.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2015
, “
Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers
,”
Sci. Rep.
,
5
, p.
13616
. 10.1038/srep13616
19.
Hernandez
,
E. P.
,
Hartl
,
D. J.
,
Akleman
,
E.
, and
Lagoudas
,
D. C.
,
2016
, “
Modeling and Analysis of Origami Structures With Smooth Folds
,”
Comput. Aided Des.
,
78
, pp.
93
106
. 10.1016/j.cad.2016.05.010
20.
Hernandez
,
E. P.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2017
, “
Kinematics of Orgiami Structures With Smooth Folds
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061019
.
21.
Hernandez
,
E. P.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2017
, “
Analysis and Design of an Active Self-Folding Antenna
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conference and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
,
Paper No. DETC2017-67855
.
22.
Hur
,
D. Y.
,
Hernandez
,
E. P.
,
Galvan
,
E.
,
Hartl
,
D.
, and
Malak
,
R.
,
2017
, “
Design Optimization of Folding Solar Powered Autonomous Underwater Vehicles Using Origami Architecture
,”
Prooceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
,
Paper No. DETC2017-67848
.
23.
Zhu
,
Y.
, and
Filipov
,
E.
,
2019
, “
An Efficient Numerical Approach for Simulating Contact in Origami Assemblages
,”
Proc. R. Soc. A
,
475
(
2230
), p.
20190366
. 10.1098/rspa.2019.0366
24.
Zhu
,
Y.
, and
Filipov
,
E.
,
2019
, “
Simulating Compliant Crease Origami With a Bar and Hinge Model
,”
IDETC/CIE
,
Anaheim, CA
,
Aug. 16–19
,
Paper No. DETC2019-97119
.
25.
Yoon
,
C.
,
Xiao
,
R.
,
Park
,
J.
,
Cha
,
J.
,
Nguyen
,
T. D.
, and
Gracias
,
D. H.
,
2014
, “
Functional Stimuli Responsive Hydrogel Devices by Self-Folding
,”
Smart Mater. Struct.
,
23
(
9
), p.
094008
.
26.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
John Wiley and Sons, Inc.
,
New York
.
27.
Timoshenko
,
S. P.
, and
Krieger
,
S. W.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill Education
,
New York
, p.
5
,
Eq. (3)
.
28.
Waitukaitis
,
S.
,
Menaut
,
R.
, and
van Hecke
,
M.
,
2015
, “
Origami Multistability: From Single Vertices to Metasheets
,”
Phys. Rev. Lett.
,
114
(
5
), p.
055503
. 10.1103/PhysRevLett.114.055503
You do not currently have access to this content.