Abstract

An Exechon robot with offsets between the axes of the joints that connect the legs to the fixed platform is analyzed for the first time. Ideally these axes intersect constituting two universal and one spherical joints. The introduction of imperfections in these universal and spherical joints leads to more complex forward and inverse kinematics, which are solved in this paper. It is proved that the equations used for the kinematics of the ideal Exechon robot are no longer applicable when these offsets are added. The constraint system is also obtained, and it is found to be different to the one of the ideal case. Finally, the combination of offsets that lead to the largest deviation in the position of the parallel platform is determined.

References

References
1.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Engin.
,
180
(
1
), pp.
371
386
. 10.1243/PIME_PROC_1965_180_029_02
2.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory.
,
35
(
1
), pp.
15
40
. 10.1016/S0094-114X(99)00006-3
3.
Merlet
,
J.
,
2006
,
Parallel Robots
,
Springer Netherlands
,
Heidelberg, Germany
.
4.
Kong
,
X.
, and
Gosselin
,
C.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer-Verlag
,
Berlin, Heidelberg
.
5.
Neumann
,
K.-E.
,
1985
, “
Robot
,”
Mar
.
22
, U.S. Patent No. US4732525A.
6.
Siciliano
,
B.
,
1999
, “
The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-Loop Direct Kinematics Algorithm
,”
Robotica
,
17
(
4
), pp.
437
445
. 10.1017/S0263574799001678
7.
Neumann
,
K.-E.
,
2006
, “
The Key to Aerospace Automation
,”
SAE International
,
Warrendale, PA
,
SAE Technical Paper
,
Paper No. 2006-01-3144
. 10.4271/2006-01-3144
8.
Neumann
,
K.-E.
,
2014
, “
Parallel-Kinematical Machine
,”
July
22
, U.S. Patent No. US20090205457A1.
9.
Shang
,
M.
, and
Butterfield
,
J.
,
2011
, “
The Experimental Test and FEA of a PKM (Exechon) in a Flexible Fixture Application for Aircraft Wing Assembly
,”
2011 IEEE International Conference on Mechatronics and Automation
,
Beijing, China
,
Aug. 7–10
, pp.
1225
1230
.
10.
Bi
,
Z.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Robot. Comput. Int. Manuf.
,
27
(
1
), pp.
186
193
. 10.1016/j.rcim.2010.07.006
11.
Jin
,
Y.
,
Bi
,
Z.
,
Liu
,
H.
,
Higgings
,
C.
,
Price
,
M.
,
Chen
,
W.
, and
Huang
,
T.
,
2015
, “
Kinematic Analysis and Dimensional Synthesis of Exechon Parallel Kinematic Machine for Large Volume Machining
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
8
. 10.1115/1.4029499
12.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Molfino
,
R.
,
2010
, “
Kinematics Analysis of the Exechon Tripod
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
1381
1388
.
13.
Zhang
,
J.
,
Zhao
,
Y.
, and
Jin
,
Y.
,
2016
, “
Kinetostatic-Model-Based Stiffness Analysis of Exechon PKM
,”
Robot. Comput. Int. Manuf.
,
37
, pp.
208
220
. 10.1016/j.rcim.2015.04.008
14.
Zhang
,
J.
,
Zhao
,
Y.
, and
Jin
,
Y.
,
2015
, “
Elastodynamic Modeling and Analysis for an Exechon Parallel Kinematic Machine
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031011
. 10.1115/1.4030938
15.
Li
,
X.
,
Zlatanov
,
D.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2012
, “
Stiffness Estimation and Experiments for the Exechon Parallel Self-Reconfiguring Fixture Mechanism
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL, Canada
, pp.
637
645
.
16.
Wang
,
M.
,
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2015
, “
Compliance Analysis of a 3-SPR Parallel Mechanism With Consideration of Gravity
,”
Mech. Mach. Theory.
,
84
, pp.
99
112
. 10.1016/j.mechmachtheory.2014.10.002
17.
Zlatanov
,
D.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2012
, “
Constraint and Singularity Analysis of the Exechon Tripod
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago IL Canada
, pp.
679
688
.
18.
Amine
,
S.
,
Caro
,
S.
, and
Wenger
,
P.
,
2012
,
Constraint and Singularity Analysis of the Exechon
,
Mechanisms, Mechanical Transmissions and Robotics
(
Applied Mechanics and Materials)
, Vol.
162
.
Trans Tech Publications
,
Switzerland
, pp.
141
150
.
19.
Hu
,
B.
,
2016
, “
Kinematically Identical Manipulators for the Exechon Parallel Manipulator and Their Comparison Study
,”
Mech. Mach. Theory.
,
103
, pp.
117
137
. 10.1016/j.mechmachtheory.2016.05.001
20.
Jin
,
Y.
, and
Chen
,
I.-M.
,
2006
, “
Effects of Constraint Errors on Parallel Manipulators With Decoupled Motion
,”
Mech. Mach. Theory.
,
41
(
8
), pp.
912
928
. 10.1016/j.mechmachtheory.2006.03.012
21.
Dai
,
J.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
. 10.1115/1.1901708
22.
Fichter
,
E. F.
, and
Hunt
,
K. H.
,
1975
, “
The Fecund Torus, Its Bitangent-Circles and Derived Linkages
,”
Mech. Mach. Theory.
,
10
(
2–3
), pp.
167
176
. 10.1016/0094-114X(75)90017-8
23.
López-Custodio
,
P. C.
,
Dai
,
J. S.
, and
Rico
,
J. M.
,
2018
, “
Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Plane-Symmetric Case
,”
ASME J. Mech. Robot.
,
10
(
3
), p.
031002
. 10.1115/1.4039002
24.
López-Custodio
,
P. C.
,
Dai
,
J. S.
, and
Rico
,
J. M.
,
2018
, “
Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Line-Symmetric Case
,”
ASME J. Mech. Robot.
,
10
(
3
), p.
031002
. 10.1115/1.4039002
25.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2002
, “
Null Space Construction Using Cofactors From a Screw–Algebra Context
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Engin. Sci.
,
458
(
2024
), pp.
1845
1866
. 10.1098/rspa.2001.0949
You do not currently have access to this content.