Abstract
An Exechon robot with offsets between the axes of the joints that connect the legs to the fixed platform is analyzed for the first time. Ideally these axes intersect constituting two universal and one spherical joints. The introduction of imperfections in these universal and spherical joints leads to more complex forward and inverse kinematics, which are solved in this paper. It is proved that the equations used for the kinematics of the ideal Exechon robot are no longer applicable when these offsets are added. The constraint system is also obtained, and it is found to be different to the one of the ideal case. Finally, the combination of offsets that lead to the largest deviation in the position of the parallel platform is determined.
Issue Section:
Special Issue: Selected Papers From IDETC 2019
References
1.
Stewart
, D.
, 1965
, “A Platform With Six Degrees of Freedom
,” Proc. Inst. Mech. Engin.
, 180
(1
), pp. 371
–386
. 10.1243/PIME_PROC_1965_180_029_022.
Dasgupta
, B.
, and Mruthyunjaya
, T.
, 2000
, “The Stewart Platform Manipulator: A Review
,” Mech. Mach. Theory.
, 35
(1
), pp. 15
–40
. 10.1016/S0094-114X(99)00006-33.
Merlet
, J.
, 2006
, Parallel Robots
, Springer Netherlands
, Heidelberg, Germany
.4.
Kong
, X.
, and Gosselin
, C.
, 2007
, Type Synthesis of Parallel Mechanisms
, Springer-Verlag
, Berlin, Heidelberg
.5.
Neumann
, K.-E.
, 1985
, “Robot
,” Mar
. 22
, U.S. Patent No. US4732525A.6.
Siciliano
, B.
, 1999
, “The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-Loop Direct Kinematics Algorithm
,” Robotica
, 17
(4
), pp. 437
–445
. 10.1017/S02635747990016787.
Neumann
, K.-E.
, 2006
, “The Key to Aerospace Automation
,” SAE International
, Warrendale, PA
, SAE Technical Paper
, Paper No. 2006-01-3144
. 10.4271/2006-01-31448.
Neumann
, K.-E.
, 2014
, “Parallel-Kinematical Machine
,” July
22
, U.S. Patent No. US20090205457A1.9.
Shang
, M.
, and Butterfield
, J.
, 2011
, “The Experimental Test and FEA of a PKM (Exechon) in a Flexible Fixture Application for Aircraft Wing Assembly
,” 2011 IEEE International Conference on Mechatronics and Automation
, Beijing, China
, Aug. 7–10
, pp. 1225
–1230
.10.
Bi
, Z.
, and Jin
, Y.
, 2011
, “Kinematic Modeling of Exechon Parallel Kinematic Machine
,” Robot. Comput. Int. Manuf.
, 27
(1
), pp. 186
–193
. 10.1016/j.rcim.2010.07.00611.
Jin
, Y.
, Bi
, Z.
, Liu
, H.
, Higgings
, C.
, Price
, M.
, Chen
, W.
, and Huang
, T.
, 2015
, “Kinematic Analysis and Dimensional Synthesis of Exechon Parallel Kinematic Machine for Large Volume Machining
,” ASME J. Mech. Rob.
, 7
(4
), p. 8
. 10.1115/1.402949912.
Zoppi
, M.
, Zlatanov
, D.
, and Molfino
, R.
, 2010
, “Kinematics Analysis of the Exechon Tripod
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Montreal, Quebec, Canada
, Aug. 15–18
, pp. 1381
–1388
.13.
Zhang
, J.
, Zhao
, Y.
, and Jin
, Y.
, 2016
, “Kinetostatic-Model-Based Stiffness Analysis of Exechon PKM
,” Robot. Comput. Int. Manuf.
, 37
, pp. 208
–220
. 10.1016/j.rcim.2015.04.00814.
Zhang
, J.
, Zhao
, Y.
, and Jin
, Y.
, 2015
, “Elastodynamic Modeling and Analysis for an Exechon Parallel Kinematic Machine
,” ASME J. Manuf. Sci. Eng.
, 138
(3
), p. 031011
. 10.1115/1.403093815.
Li
, X.
, Zlatanov
, D.
, Zoppi
, M.
, and Molfino
, R.
, 2012
, “Stiffness Estimation and Experiments for the Exechon Parallel Self-Reconfiguring Fixture Mechanism
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, IL, Canada
, pp. 637
–645
.16.
Wang
, M.
, Liu
, H.
, Huang
, T.
, and Chetwynd
, D. G.
, 2015
, “Compliance Analysis of a 3-SPR Parallel Mechanism With Consideration of Gravity
,” Mech. Mach. Theory.
, 84
, pp. 99
–112
. 10.1016/j.mechmachtheory.2014.10.00217.
Zlatanov
, D.
, Zoppi
, M.
, and Molfino
, R.
, 2012
, “Constraint and Singularity Analysis of the Exechon Tripod
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago IL Canada
, pp. 679
–688
.18.
Amine
, S.
, Caro
, S.
, and Wenger
, P.
, 2012
, Constraint and Singularity Analysis of the Exechon
, Mechanisms, Mechanical Transmissions and Robotics
(Applied Mechanics and Materials)
, Vol. 162
. Trans Tech Publications
, Switzerland
, pp. 141
–150
.19.
Hu
, B.
, 2016
, “Kinematically Identical Manipulators for the Exechon Parallel Manipulator and Their Comparison Study
,” Mech. Mach. Theory.
, 103
, pp. 117
–137
. 10.1016/j.mechmachtheory.2016.05.00120.
Jin
, Y.
, and Chen
, I.-M.
, 2006
, “Effects of Constraint Errors on Parallel Manipulators With Decoupled Motion
,” Mech. Mach. Theory.
, 41
(8
), pp. 912
–928
. 10.1016/j.mechmachtheory.2006.03.01221.
Dai
, J.
, Huang
, Z.
, and Lipkin
, H.
, 2006
, “Mobility of Overconstrained Parallel Mechanisms
,” ASME J. Mech. Des.
, 128
(1
), pp. 220
–229
. 10.1115/1.190170822.
Fichter
, E. F.
, and Hunt
, K. H.
, 1975
, “The Fecund Torus, Its Bitangent-Circles and Derived Linkages
,” Mech. Mach. Theory.
, 10
(2–3
), pp. 167
–176
. 10.1016/0094-114X(75)90017-823.
López-Custodio
, P. C.
, Dai
, J. S.
, and Rico
, J. M.
, 2018
, “Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Plane-Symmetric Case
,” ASME J. Mech. Robot.
, 10
(3
), p. 031002
. 10.1115/1.403900224.
López-Custodio
, P. C.
, Dai
, J. S.
, and Rico
, J. M.
, 2018
, “Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Line-Symmetric Case
,” ASME J. Mech. Robot.
, 10
(3
), p. 031002
. 10.1115/1.403900225.
Dai
, J. S.
, and Jones
, J. R.
, 2002
, “Null Space Construction Using Cofactors From a Screw–Algebra Context
,” Proc. R. Soc. Lond. Ser. A: Math. Phys. Engin. Sci.
, 458
(2024
), pp. 1845
–1866
. 10.1098/rspa.2001.0949Copyright © 2020 by ASME
You do not currently have access to this content.