Abstract

The paper presents a second-order friction model for the joints of industrial robot manipulators that takes into account temperature effects. A solution based on a polynomial description of the friction is proposed. The theoretical analysis and the experimental measurements have shown that friction decreases with increasing temperature, which in turn depends on the working cycle of the manipulator. The mathematical model here proposed allows to foresee the friction variation during extensive working cycles and it does not require the use of a transducer for the measurement of the joint internal temperature; therefore it is well suitable for low-cost industrial applications, to improve the control performance or to predict the energy consumption. Experimental tests performed on a commercial six degrees-of-freedom (6 DOF) manipulator show that the model is effective in estimating the joint temperature and the friction torque during the robot operations.

References

References
1.
Stribeck
,
R.
,
1900
, “
Kugellager für beliebige belastungen (ball bearings for arbitrary loads)
,”
Mitteilungen aus der Centralstelle für wissenschaftlichtechnische Untersuchungen
,
HS Hermann, Berlin
.
2.
Stribeck
,
R.
,
1902
, “
Die wesentlichen eigenschaften der gleit- und rollenlager (characteristics of plain and roller bearings
,”
Zeit. des VDI 46
.
3.
Simoni
,
L.
,
Beschi
,
M.
,
Legnani
,
G.
, and
Visioli
,
A.
,
2017
, “
On the Inclusion of Temperature in the Friction Model of Industrial Robots
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
3482
3487
. 10.1016/j.ifacol.2017.08.933
4.
Yoon
,
J. Y.
, and
Trumper
,
D. L.
,
2014
, “
Friction Modeling, Identification, and Compensation Based on Friction Hysteresis and Dahl Resonance
,”
Mechatronics
,
24
(
6
), pp.
734
741
. 10.1016/j.mechatronics.2014.02.006
5.
Ruderman
,
M.
,
2015
, “
Presliding Hysteresis Damping of LuGre and Maxwell-Slip Friction Models
,”
Mechatronics
,
30
(
6
), pp.
225
230
. 10.1016/j.mechatronics.2015.07.007
6.
Freidovich
,
L.
,
Robertsson
,
A.
,
Shiriaev
,
A.
, and
Johansson
,
R.
,
2009
, “
Lugre-Model-Based Friction Compensation
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
194
200
. 10.1109/TCST.2008.2010501
7.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Automat. Control
,
40
(
3
), pp.
419
425
. 10.1109/9.376053
8.
Johanastrom
,
K.
, and
Canudas-De-Wit
,
C.
,
2008
, “
Revisiting the Lugre Friction Model
,”
IEEE Control Syst. Mag.
,
28
(
6
), pp.
101
114
. 10.1109/MCS.2008.929425
9.
Lampaert
,
V.
,
Al-Bender
,
F.
, and
Swevers
,
J.
,
2003
, “
A Generalized Maxwell-Slip Friction Model Appropriate for Control Purposes
,”
2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No. 03EX775)
,
Saint Petersburg, Russia
,
Aug. 20–22
,
Vol. 4
, IEEE
Silver Spring, MD
, pp.
1170
1177
.
10.
Simoni
,
L.
,
Beschi
,
M.
,
Legnani
,
G.
, and
Visioli
,
A.
,
2015
, “
Friction Modeling With Temperature Effects for Industrial Robot Manipulators
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
28 Sep.–2 Oct
., 2015,
IEEE
Silver Spring, MD
, pp.
3524
3529
.
11.
Carlson
,
F. B.
,
Robertsson
,
A.
, and
Johansson
,
R.
,
2015
, “
Modeling and Identification of Position and Temperature Dependent Friction Phenomena Without Temperature Sensing
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg
,
Germany
,
Sept. 28–Oct. 2
, IEEE Silver Spring, MD, pp.
3045
3051
.
12.
Bittencourt
,
A. C.
, and
Axelsson
,
P.
,
2013
, “
Modeling and Experiment Design for Identification of Wear in a Robot Joint Under Load and Temperature Uncertainties Based on Friction Data
,”
IEEE/ASME Trans. Mechatron.
,
19
(
5
), pp.
1694
1706
. 10.1109/TMECH.2013.2293001
13.
Simoni
,
L.
,
Beschi
,
M.
,
Legnani
,
G.
, and
Visioli
,
A.
,
2019
, “
Modelling the Temperature in Joint Friction of Industrial Manipulators
,”
Robotica
,
37
(
5
), pp.
906
927
. 10.1017/S0263574717000509
14.
Jatta
,
F.
,
Legnani
,
G.
, and
Visioli
,
A.
,
2006
, “
Friction Compensation in Hybrid Force/Velocity Control of Industrial Manipulators
,”
IEEE Trans. Ind. Electron.
,
53
(
2
), pp.
604
613
. 10.1109/TIE.2006.870682
15.
Lubrano
,
E.
, and
Clavel
,
R.
,
2010
, “
Thermal Calibration of a 3 Dof Ultra High-Precision Robot Operating in Industrial Environment
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK, USA
,
May 3–7, 2010
,
IEEE Silver Spring, MD
, pp.
3692
3697
.
16.
Gong
,
C.
,
Yuan
,
J.
, and
Ni
,
J.
,
2000
, “
Nongeometric Error Identification and Compensation for Robotic System by Inverse Calibration
,”
Int. J. Mach. Tools Manuf.
,
40
(
14
), pp.
2119
2137
. 10.1016/S0890-6955(00)00023-7
17.
Legnani
,
G.
,
Simoni
,
L.
,
Beschi
,
M.
, and
Visioli
,
A.
,
2016
, “
A New Friction Model for Mechanical Transmissions Considering Joint Temperature
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
American Society of Mechanical Engineers Digital Collection
New York
.
18.
Moya-Cessa
,
H. M.
, and
Soto-Eguibar
,
F.
,
2011
,
Differential Equations: An Operational Approach
,
Rinton Press Incorporated
,
Princeton, NJ
.
19.
Bittencourt
,
A. C.
,
Wernholt
,
E.
,
Sander-Tavallaey
,
S.
, and
Brogårdh
,
T.
,
2010
, “
An Extended Friction Model to Capture Load and Temperature Effects in Robot Joints
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22, 2010
,
IEEE
:
Silver Spring, MD
, pp.
6161
6167
.
20.
Ghidini
,
S.
,
Beschi
,
M.
, and
Pedrocchi
,
N.
,
2019
, “
A Robust Linear Control Strategy to Enhance Damping of a Series Elastic Actuator on a Collaborative Robot
,”
J. Intelligent Rob. Syst.
, pp.
1
15
.
21.
Villagrossi
,
E.
,
Simoni
,
L.
,
Beschi
,
M.
,
Pedrocchi
,
N.
,
Marini
,
A.
,
Tosatti
,
L. M.
, and
Visioli
,
A.
,
2018
, “
A Virtual Force Sensor for Interaction Tasks With Conventional Industrial Robots
,”
Mechatronics
,
50
(
2
), pp.
78
86
. 10.1016/j.mechatronics.2018.01.016
You do not currently have access to this content.