Abstract

We present new families of thick origami mechanisms that achieve rigid foldability and parallel stacking of panels in the flat-folded state using linkages for some or all of the hinges between panels. A degree-four vertex results in a multiloop eight-bar spatial mechanism that can be analyzed as separate linkages. The individual linkages are designed so that they introduce offsets perpendicular to the panels that are mutually compatible around each vertex. This family of mechanisms offers the unique combination of planar unfolded state, parallel-stacked panels in the flat-folded state and kinematic single-degree-of-freedom motion from the flat-unfolded to the flat-folded state. The paper develops the mathematics defining the necessary offsets, beginning with a symmetric bird’s-foot vertex, and then shows that the joints can be developed for asymmetric flat-foldable systems. Although in the general case there is no guarantee of achieving perfect kinematic motion, we show that for many cases of interest, the deviation is a tiny fraction of the plate thickness. Mechanical realizations of several examples are presented.

References

1.
Francis
,
K. C.
,
Rupert
,
L. T.
,
Lang
,
R. J.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
,
New York
, p.
V05BT08A030
.
2.
You
,
Z.
, and
Kuribayashi
,
K.
,
2009
, “Expandable Tubes With Negative Poisson’s Ratio and Their Applications in Medicine,”
Origami4: Fourth International Meeting of Origami Science, Mathematics, and Education
,
R. J.
Lang
, ed.,
A K Peters Ltd.
,
Wellesley, MA
, pp.
117
128
.
3.
Miura
,
K.
, and
Natori
,
M.
,
1985
, “
2-D Array Experiment on Board a Space Flyer Unit
,”
Space Solar Power Rev.
,
5
(
4
), pp.
345
356
.
4.
Miura
,
K.
,
2009
, “The Science of Miura-ori: A Review,”
Origami4: Fourth International Meeting of Origami Science, Mathematics, and Education
,
Lang
,
R. J.
, ed.,
A K Peters Ltd.
,
Wellesley, MA
, pp.
87
100
.
5.
Miura
,
K.
,
1970
, “
Proposition of Pseudo-Cylindrical Concave Polyhedral Shells
,”
Proceedings of IASS Symposium on Folded Plates and Prismatic Structures
,
Vienna
,
Sept.–Oct., 1970
,
Robert Krapfenbauer
, pp.
141
163
.
6.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
. 10.1115/1.4039314
7.
McPherson
,
B. N.
, and
Kauffman
,
J. L.
,
2019
, “
Dynamics and Estimation of Origami-Inspired Deployable Space Structures: A Review
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
0480
.
8.
Hoberman
,
C.
,
1988
, “
Reversibly Expandable Three-Dimensional Structure
,” U.S. Patent No. 4,780,344.
9.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
. 10.1126/science.aab2870
10.
Hoberman
,
C.
,
1991
, “
Reversibly Expandable Structure
,” U.S. Patent No. 4,981,732.
11.
Ku
,
J. S.
, and
Demaine
,
E. D.
,
2016
, “
Folding Flat Crease Patterns With Thick Materials
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031003
.
12.
Tachi
,
T.
,
2011
, “Rigid-Foldable Thick Origami,”
Origami5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
Wang-Iverson
,
P.
,
Lang
,
R. J.
,
Yim
,
M.
, eds.,
A K Peters/CRC Press
,
Boca Raton, FL
, pp.
253
264
.
13.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
An Offset Panel Technique for Thick Rigidly Foldable Origami
,”
Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
New York
,
Paper No. DETC2014-35606
.
14.
Lang
,
R. J.
,
Nelson
,
T.
,
Magleby
,
S.
, and
Howell
,
L. L.
,
2017
, “
Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021013
. 10.1115/1.4035686
15.
Tsai
,
L.-W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
16.
Justin
,
J.
,
1997
, “Towards a Mathematical Theory of Origami,”
Origami Science and Art: Proceedings of the Second International Meeting of Origami Science and Scientific Origami
,
K.
Miura
, ed.,
Seian University of Art and Design
,
Shiga, Japan
, pp.
15
30
.
17.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2016
, “
Single Degree-of-freedom Rigidly Foldable Cut Origami Flashers
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031005
. 10.1115/1.4032102
18.
Lang
,
R. J.
,
2018
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
,
Boca Raton, FL
.
19.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
. 10.1098/rsos.150067
20.
Miura
,
K.
,
1969
, “
Proposition of Pseudo-Cylindrical Concave Polyhedral Shells
,”
ISAS Rep.
,
34
(
9
), pp.
141
163
.
21.
Barreto
,
P. T.
,
1997
, “Lines Meeting on a Surface: The “Mars” Paperfolding,”
Origami Science and Art: Proceedings of the Second International Meeting of Origami Science and Scientific Origami
,
K.
Miura
, ed.,
Seian University of Art and Design
,
Shiga, Japan
, pp.
343
359
.
22.
Weisstein
,
E. W.
, “
Weierstrass substitution
,”
MathWorld—A Wolfram Web Resource
, http://mathworld.wolfram.com/WeierstrassSubstitution.html, Accessed January 11, 2014.
23.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
Analysis of Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
69
74
. 10.1115/1.2826119
24.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
New and Revised Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
75
82
. 10.1115/1.2826120
25.
Yoshimura
,
Y.
,
1951
, “
On the Mechanism of a Circular Cylindrical Shell Under Axial Compression
,”
NACA Technical Reports, Technical Report No. NACA-TM-1390
.
26.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1992
, “
Inextensional Wrapping of Flat Membranes
,”
Proceedings of the First International Seminar on Structural Morphology
,
Montpellier
,
Sept. 7–11
, pp.
203
215
.
27.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
. 10.1115/1.4025372
28.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
. 10.1115/1.2901553
29.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part II: The Folding Process
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
778
783
. 10.1115/1.2901554
30.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
The Folding of Triangulated Cylinders, Part III: Experiments
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
77
83
. 10.1115/1.2787212
31.
Ceccarelli
,
M.
, and
Koetsier
,
T.
,
2008
, “
Burmester and Allievi: A Theory and Its Application for Mechanism Design at the End of 19th Century
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072301
. 10.1115/1.2918911
32.
Lang
,
R. J.
,
Brown
,
N.
,
Ignaut
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2019
, “
Rigidly Foldable Thick Origami Using Designed-Offset Linkages (Supplementary Material)
,” https://langorigami.com/publication/rigidly-foldable-thick-origami-using-designed-offset-linkages/, Accessed September 9, 2019.
You do not currently have access to this content.