Abstract

In this paper, the cable tension and platform deflection of cable-driven robots are studied. The significance of cable density, elasticity, and cross-sectional area; platform mass, radius, and center of mass; the external wrench and platform orientation on the cable tension, platform deflection, and workspace of the planar cable robots is investigated. It is shown that, in addition to the cable mass, external wrench has a more prominent effect on the workspace of the catenary cable model. Moreover, design issues and parameters affecting the manipulator deflection are examined, and those that would result in disjointed workspace regions and deflection maps are identified. It is presented that the change in the deflection is gradual throughout the workspace for a constant external wrench. For the catenary model, depending on the cable properties, platform orientation, manipulator design, and external wrench, the workspace with the deflection limit may consist of disconnected regions.

References

1.
Notash
,
L.
,
2013
, “Designing Positive Tension for Wire-Actuated Parallel Manipulators,”
Advances in Mechanisms, Robotics and Design Education and Research
,
V.
Kumar
,
J.
Schmiedeler
,
S. V.
Sreenivasan
, and
H.-J.
Su
, eds.,
Springer
,
Switzerland
, pp.
251
263
.
2.
Notash
,
L.
,
2018
, “Manipulator Deflection for Optimum Tension of Cable-Driven Robots With Parameter Variations,”
Cable-Driven Parallel Robots
,
Springer International Publishing
,
Cham
, pp.
26
36
.
3.
Roberts
,
R. G.
,
Graham
,
T.
, and
Lippit
,
T.
,
1998
, “
On the Inverse Kinematics, Statics, and Fault Tolerance of Cable-Suspended Robots
,”
J. Rob. Syst.
,
15
(
10
), pp.
581
597
. 10.1002/(SICI)1097-4563(199810)15:10<581::AID-ROB4>3.0.CO;2-P
4.
Oh
,
S. R.
, and
Agrawal
,
S. K.
,
2005
, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
457
465
. https://doi.org/10.1109/tro.2004.838029
5.
Voglewede
,
P. A.
, and
Ebert-Uphoff
,
I.
,
2005
, “
Application of the Antipodal Grasp Theorem to Cable-Driven Robots
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
713
718
. 10.1109/TRO.2005.844679
6.
Stump
,
E.
, and
Kumar
,
V.
,
2006
, “
Workspace of Cable-Actuated Parallel Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
159
167
. 10.1115/1.2121741
7.
McColl
,
D.
, and
Notash
,
L.
,
2009
, “
Workspace Envelope Formulation of Planar Wire-Actuated Parallel Manipulators
,”
Trans. Can. Soc. Mech. Eng.
,
33
(
4
), pp.
547
560
. 10.1139/tcsme-2009-0037
8.
Samuel
,
B.
,
Gosselin
,
C.
, and
Moore
,
B.
,
2010
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011010
. 10.1115/1.4000558
9.
McColl
,
D.
, and
Notash
,
L.
,
2011
, “
Workspace Formulation of Planar Wire-Actuated Parallel Manipulators
,”
Robotica
,
29
(
4
), pp.
607
617
. 10.1017/S0263574710000469
10.
Pott
,
A.
,
2018
,
Cable-Driven Parallel Robots: Theory and Application
,
Vol. 120
,
Springer
,
Cham
.
11.
Irvine
,
H. M.
,
1981
,
Cable Structures
,
The MIT Press
.
12.
Kozak
,
K.
,
Zhou
,
Q.
, and
Wang
,
J.
,
2006
, “
Static Analysis of Cable-Driven Manipulators With Non-Negligible Cable Mass
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
425
433
. 10.1109/TRO.2006.870659
13.
Korayem
,
M. H.
,
Bamdad
,
M.
, and
Saadat
,
M.
,
2007
, “
Workspace Analysis of Cable-Suspended Robots With Elastic Cable
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Sanya, China
,
Dec. 15–18
, pp.
1942
1947
.
14.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2016
, “
Force Distribution With Pose-Dependent Force Boundaries for Redundantly Actuated Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041004
. 10.1115/1.4032104
15.
Hui
,
L.
,
2015
, “
A Giant Sagging-Cable Driven Parallel Robot of FAST Telescope: Its Tension-Feasible Workspace of Orientation and Orientation Planning
,”
14th World Congress in Mechanism and Machine Science
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
25
30
.
16.
Nazari
,
V.
, and
Notash
,
L.
,
2013
, “
Workspace of Wire-Actuated Parallel Manipulators and Variations in Design Parameters
,”
Trans. Can. Soc. Mech. Eng.
,
37
(
2
), pp.
215
229
. 10.1139/tcsme-2013-0013
17.
Miermeister
,
P.
,
Kraus
,
W.
,
Lan
,
T.
, and
Pott
,
A.
,
2015
, “An Elastic Cable Model for Cable-Driven Parallel Robots Including Hysteresis Effects,”
Cable-Driven Parallel Robots
,
Springer International Publishing
,
Cham
, pp.
17
28
.
18.
Baklouti
,
S.
,
Courteille
,
E.
,
Caro
,
S.
, and
Dkhil
,
M.
,
2017
, “
Dynamic and Oscillatory Motions of Cable-Driven Parallel Robots Based on a Nonlinear Cable Tension Model
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061014
. 10.1115/1.4038068
19.
Notash
,
L.
,
2012
, “
Failure Recovery for Wrench Capability of Wire-Actuated Parallel Manipulators
,”
Robotica
,
30
(
6
), pp.
941
950
. 10.1017/S0263574711001160
20.
Notash
,
L.
,
2019
, “
Deflection Maps of Elastic Catenary Cable-Driven Robots
,”
ASME Paper No. DETC2019-97083
. 10.1115/detc2019-97083
You do not currently have access to this content.