Abstract

Silicone-based pneumatic actuators are among the most widely used soft actuators in adaptable fingers. However, due to the soft nature of silicone, the performance of these fingers is highly affected by the low torsional stiffness, which may cause failure in grasping and manipulation. To address this problem, a compact design is proposed by embedding a rigid skeleton into a soft pneumatic finger. A finite element approach with an analysical model is used to evaluate the performance of the fingers both with and without the skeleton. Then, a series of experiments is performed to study the bending motion and rigidity of the fingers. The results reveal that the skeleton increases the torsional stiffness of the finger up to 300%. Furthermore, the consistency with the experimental data indicates the good precision of the proposed modeling method. Finally, a two-finger hand is designed to evaluate the performance of the reinforced finger in reality. The grasp experiments illustrate that the hybrid finger with the skeleton is highly adaptable and can successfully grasp and manipulate heavy objects. Thus, a potential approach is proposed to improve the torsional stiffness of silicone-based pneumatic fingers while maintaining adaptability.

References

References
1.
Vogtmann
,
D. E.
,
Gupta
,
S. K.
, and
Bergbreiter
,
S.
,
2013
, “
Characterization and Modeling of Elastomeric Joints in Miniature Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041017
. 10.1115/1.4025298
2.
Townsend
,
W.
,
2000
, “
The Barrett Hand Grasper—Programmably Flexible Part Handling and Assembly
,”
Ind. Rob. Int. J.
,
27
(
3
), pp.
18
188
. 10.1108/01439910010371597
3.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2008
, “
Simple, Reliable Robotic Grasping for Human Environments
,”
Proceedings of IEEE International Conference on Technologies for Practical Robot Applications (TePRA)
,
Woburn, MA
,
Nov. 10–11
, pp.
156
161
.
4.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021007
. 10.1115/1.4029497
5.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
135
143
. 10.1016/j.robot.2014.08.014
6.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
. 10.1038/nature14543
7.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: a Bioinspired Evolution in Robotics
,”
Trends Biotechnol.
,
31
(
5
), pp.
287
294
. 10.1016/j.tibtech.2013.03.002
8.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), pp.
1
33
. 10.1002/adma.201707035
9.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem.
,
50
(
8
), pp.
1930
1935
. 10.1002/ange.201006464
10.
Gorissen
,
B.
,
Reynaerts
,
D.
,
Konishi
,
S.
,
Yoshida
,
K.
,
Kim
,
J.-W.
, and
De Volder
,
M.
,
2017
, “
Elastic Inflatable Actuators for Soft Robotic Applications
,”
Adv. Mater.
,
29
(
43
), pp.
783
798
. 10.1002/adma.201604977
11.
Li
,
Y.
,
Chen
,
Y.
,
Yang
,
Y.
, and
Wei
,
Y.
,
2017
, “
Passive Particle Jamming and Its Stiffening of Soft Robotic Grippers
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
446
455
. 10.1109/TRO.2016.2636899
12.
Tavakoli
,
M.
,
Sayuk
,
A.
,
Lourenço
,
J.
, and
Neto
,
P.
,
2017
, “
Anthropomorphic Finger for Grasping Applications: 3D Printed Endoskeleton in a Soft Skin
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2607
2620
. 10.1007/s00170-016-9971-8
13.
Tavakoli
,
M.
, and
de Almeida
,
A.
,
2014
, “
Adaptive Underactuated Anthropomorphic Hand: ISR-SoftHand
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
1629
1634
.
14.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
. 10.1002/adfm.201303288
15.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T. B.
,
Galloway
,
K. C.
,
Wood
,
R. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
778
789
. 10.1109/TRO.2015.2428504
16.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
. 10.1177/0278364915592961
17.
Deimel
,
R.
, and
Brock
,
O.
,
2013
, “
A Compliant Hand Based on a Novel Pneumatic Actuator
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA) Karlsruhe
,
Germany
,
May 6–10
, pp.
2047
2053
.
18.
Hao
,
Y.
,
Wang
,
T.
,
Ren
,
Z.
,
Gong
,
Z.
,
Wang
,
H.
,
Yang
,
X.
,
Guan
,
S.
, and
Wen
,
L.
,
2017
, “
Modeling and Experiments of a Soft Robotic Gripper in Amphibious Environments
,”
Int. J. Adv. Rob. Syst.
,
14
(
3
), pp.
1
12
. 10.1177/1729881417707148
19.
Alici
,
G.
,
Canty
,
T.
,
Mutlu
,
R.
,
Hu
,
W.
, and
Sencadas
,
V.
,
2018
, “
Modeling and Experimental Valuation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers
,”
Soft Rob.
,
5
(
1
), pp.
318
331
. 10.1089/soro.2016.0052
20.
Lotfiani
,
A.
,
Yi
,
X.
,
Qinzhi
,
Z.
,
Shao
, Z.
, and
Wang
,
L.
,
2018
, “
Design and Experiment of a Fast-Soft Pneumatic Actuator With High Output Force
,”
Proceedings of 11th International Conference on Intelligent Robotics and Applications (ICIRA)
,
Newcastle, Australia
,
Aug. 9–11
.
21.
Yang
,
Y.
, and
Chen
,
Y.
,
2016
, “
Novel Design and 3D Printing of Variable Stiffness Robotic Fingers Based on Shape Memory Polymer
,”
Proceedings of 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
UTown, Singapore
,
June 26–29
, pp.
195
200
.
22.
Yang
,
Y.
,
Chen
,
Y.
,
Li
,
Y.
,
Wang
,
Z.
, and
Li
,
Y.
,
2017
, “
Novel Variable-Stiffness Robotic Fingers With Built-In Position Feedback
,”
Soft Rob.
,
4
(
4
), pp.
338
352
. 10.1089/soro.2016.0060
23.
Yang
,
Y.
,
Chen
,
Y.
,
Li
,
Y.
,
Chen
,
M. Z.
, and
Wei
,
Y.
,
2017
, “
Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material
,”
Soft Rob.
,
4
(
2
), pp.
147
162
. 10.1089/soro.2016.0034
24.
Al-Rubaiai
,
M.
,
Pinto
,
T.
,
Qian
,
C.
, and
Tan
,
X.
,
2018
, “
Soft Actuators With Stiffness and Shape Modulation Using 3D-Printed Conductive PLA Material
,”
Soft Rob.
,
6
(
3
), pp.
318
332
. 10.1089/soro.2018.0056
25.
Wall
,
V.
,
Deimel
,
R.
, and
Brock
,
O.
,
2015
, “
Selective Stiffening of Soft Actuators Based on Jamming
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
252
257
.
26.
Wei
,
Y.
,
Chen
,
Y.
,
Ren
,
T.
,
Chen
,
Q.
,
Yan
,
C.
,
Yang
,
Y.
,
Li
,
Y.
,
2016
, “
A Novel, Variable Stiffness Robotic Gripper Based on Integrated Soft Actuating and Particle Jamming
,”
Soft Rob.
,
3
(
3
), pp.
134
143
. 10.1089/soro.2016.0027
27.
Gere
,
J. M.
,
2004
,
Mechanics of Materials
, 6th ed., Sec. 3-10,
Thomson Learning, Inc.
, pp.
234
243
.
28.
Francu
,
J.
,
Novackova
,
P.
, and
Janıcek
,
P.
,
2012
, “
Torsion of Non-Circular Bar
,”
Eng. Mech.
,
19
(
1
), pp.
45
60
.
You do not currently have access to this content.