Abstract

Autonomous underwater vehicles (AUVs) have shown great promise in fulfilling surveillance, scavenging, and monitoring tasks. Traditional gliders and streamlined AUVs are designed for long-term operational efficiency in expansive environments but are limited in cluttered spaces due to their shape and control authority; agile AUVs can penetrate cluttered or sensitive environments but are limited in operational endurance at large spatial scales. This paper presents the dynamic modeling and control design of an underwater hull capable of actuating its shape morphology. The prototype hull incorporates flexible, buckled fiberglass ribs to ensure a rigid shape that is actuated by modulating the length of the body’s semi-major axis. We represent the vehicle shape using a single control input actuating the vehicle’s length-to-diameter ratio. Hydrodynamic modeling of the flexible hull suggests that dynamic shape actuation can modulate the mass and drag properties of the hull to improve control of the vehicle’s forward speed. Using tools from nonlinear control theory, this paper presents the derivation of a shape-actuating autonomous control algorithm regulating the vehicle speed to a time-varying reference speed, subject to the actuator limits. The theoretical control results are illustrated using numerical simulations of the vehicle model.

References

References
1.
Jones
,
D. O. B.
,
Gates
,
A. R.
,
Huvenne
,
V. A. I.
,
Phillips
,
A. B.
, and
Bett
,
B. J.
,
2019
, “
Autonomous Marine Environmental Monitoring: Application in Decommissioned Oil Fields
,”
Sci. Total Environ.
,
668
, pp.
835
853
. 10.1016/j.scitotenv.2019.02.310
2.
Munafò
,
A.
,
Ferri
,
G.
,
Lepage
,
K.
, and
Goldhahn
,
R.
,
2017
, “
AUV Active Perception: Exploiting the Water Column
,”
Proceedings of the IEEE OCEANS 2017
,
Aberdeen, UK
,
June 19–22
, pp.
1
8
.
3.
Bhattacharyya
,
S.
,
Asada
,
H. H.
, and
Triantafyllou
,
M. S.
,
2015
, “
A Self Stabilizing Underwater Sub-Surface Inspection Robot Using Hydrodynamic Ground Effect
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
1573
1580
.
4.
Willcox
,
S.
,
Vaganay
,
J.
,
Dani
,
G.
, and
Curcio
,
J. A.
,
2006
, “
Multi-Vehicle Cooperative Navigation and Autonomy With the Bluefin CADRE System
,”
7th IFAC Conference on Manoeuvering and Control of Marine Craft
,
Lisbon, Portugal
,
IFAC
, pp.
1
6
.
5.
Kim
,
S.
,
Choi
,
H.-T.
,
Lee
,
J.-W.
, and
Jun Lee
,
Y.
,
2014
, “
Design, Implementation, and Experiment of an Underwater Robot for Effective Inspection of Underwater Structures
,”
Robot Intelligence Technology and Applications 2
,
J.-H.
Kim
,
E. T.
Matson
,
H.
Myung
,
P.
Xu
, and
F.
Karray
, eds.,
Springer
,
New York
, pp.
821
829
.
6.
Rufo
,
M.
, and
Smithers
,
M.
,
2011
, “
GhostSwimmer™ AUV: Applying Biomimetics to Underwater Robotics for Achievement of Tactical Relevance
,”
Mar. Technol. Soc. J.
,
45
(
4
), pp.
24
30
. 10.4031/MTSJ.45.4.18
7.
Weymouth
,
G. D.
, and
Triantafyllou
,
M. S.
,
2013
, “
Ultra-Fast Escape of a Deformable Jet-Propelled Body
,”
J. Fluid Mech.
,
721
, pp.
367
385
. 10.1017/jfm.2013.65
8.
Weymouth
,
G. D.
,
Subramaniam
,
V.
, and
Triantafyllou
,
M. S.
,
2015
, “
Ultra-Fast Escape Maneuver of an Octopus-Inspired Robot
,”
Bioinspir. Biomim.
,
10
(
1
), p.
016016
. 10.1088/1748-3190/10/1/016016
9.
Isa
,
K.
,
Arshad
,
M.
, and
Ishak
,
S.
,
2014
, “
A Hybrid-Driven Underwater Glider Model, Hydrodynamics Estimation, and an Analysis of the Motion Control
,”
Ocean Eng.
,
81
, pp.
111
129
. 10.1016/j.oceaneng.2014.02.002
10.
Sathishkumar
,
R.
, and
Rajavel
,
R.
,
2014
, “
Submarine Vehicle Design : Technology Needs and Challenges
,”
Int. J. Innov. Res. Adv. Eng.
,
1
(
7
), pp.
217
222
.
11.
Stokey
,
R.
,
Roup
,
A.
,
von Alt
,
C.
,
Allen
,
B.
,
Forrester
,
N.
,
Austin
,
T.
,
Goldsborough
,
R.
,
Purcell
,
M.
,
Jaffre
,
F.
,
Packard
,
G.
, and
Kukulya
,
A.
,
2005
, “
Development of the REMUS 600 Autonomous Underwater Vehicle
,”
Proceedings of the OCEANS 2005 MTS/IEEE
,
Washington, DC
,
Sept. 17–23
, pp.
1301
1304
.
12.
Schofield
,
O.
,
Kohut
,
J.
,
Aragon
,
D.
,
Creed
,
L.
,
Graver
,
J.
,
Haldeman
,
C.
,
Kerfoot
,
J.
,
Roarty
,
H.
,
Jones
,
C.
,
Webb
,
D.
, and
Glenn
,
S.
,
2007
, “
Slocum Gliders: Robust and Ready
,”
J. Field Robot.
,
24
(
6
), pp.
473
485
. 10.1002/rob.20200
13.
Rust
,
I. C.
, and
Asada
,
H. H.
,
2011
, “
The Eyeball ROV: Design and Control of a Spherical Underwater Vehicle Steered by an Internal Eccentric Mass
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, pp.
5855
5862
.
14.
Lin
,
X.
, and
Guo
,
S.
,
2012
, “
Development of a Spherical Underwater Robot Equipped With Multiple Vectored Water-Jet-Based Thrusters
,”
J. Intell. Robot. Syst.
,
67
(
3–4
), pp.
307
321
. 10.1007/s10846-012-9651-3
15.
Fish
,
F. E.
,
2013
, “
Advantages of Natural Propulsive Systems
,”
Mar. Technol. Soc. J.
,
47
(
5
), pp.
37
44
. 10.4031/MTSJ.47.5.2
16.
Moored
,
K. W.
,
Fish
,
F. E.
,
Kemp
,
T. H.
, and
Bart-Smith
,
H.
,
2011
, “
Batoid Fishes: Inspiration for the Next Generation of Underwater Robots
,”
Mar. Technol. Soc. J.
,
45
(
4
), pp.
99
109
. 10.4031/MTSJ.45.4.10
17.
Curet
,
O. M.
,
Patankar
,
N. A.
,
Lauder
,
G. V.
, and
MacIver
,
M. A.
,
2011
, “
Mechanical Properties of a Bio-Inspired Robotic Knifefish With an Undulatory Propulsor
,”
Bioinspir. Biomim.
,
6
(
2
), p.
026004
. 10.1088/1748-3182/6/2/026004
18.
Kalumuck
,
K. M.
,
Brandt
,
A.
,
Armand
,
M.
,
Kutzer
,
M. D.
,
Brown
,
C. Y.
,
Cowan
,
N. J.
,
Prosperetti
,
A.
,
Blizzard
,
C.
,
Burns
,
R.
,
Takagi
,
M.
,
Fortune
,
E. S.
, and
Sciences
,
B.
,
2010
, “
Biomimetic Undulating Fin Propulsion for Maneuvering Underwater Vehicles
,”
Johns Hopkins APL Tech. Dig.
,
28
(
3
), pp.
278
279
.
19.
Mann
,
K.
,
1962
,
Leeches (Hirudinea) Their Structure, Physiology, Ecology and Embryology
,
Pergamon Press
,
New York
.
20.
Fossen
,
T. I.
,
1994
,
Guidance and Control of Ocean Vehicles
,
John Wiley and Sons
,
West Sussex
.
21.
Wang
,
C.
,
Zhang
,
F.
, and
Schaefer
,
D.
,
2015
, “
Dynamic Modeling of an Autonomous Underwater Vehicle
,”
J. Mar. Sci. Technol.
,
20
(
2
), pp.
199
212
. 10.1007/s00773-014-0259-0
22.
Hoerner
,
S. F.
,
1965
,
Fluid Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance
,
Db Hoerner Fluid Dynamics
,
Alburqueque, NM
.
23.
Gibson
,
S. B.
,
Mccarter
,
B.
,
Stilwell
,
D. J.
, and
Neu
,
W. L.
,
2015
, “
A Comparison of Hydrodynamic Damping Models Using Least-Squares and Adaptive Identifier Methods for Autonomous Underwater Vehicles
,”
Proceedings of the MTS/IEEE OCEANS
,
Washington, DC
,
Oct. 19–22
, pp.
1
7
.
24.
Raj
,
A.
, and
Thakur
,
A.
,
2016
, “
Fish-Inspired Robots: Design, Sensing, Actuation, and Autonomy—A Review of Research
,”
Bioinspir. Biomim.
,
11
(
3
), pp.
1
30
. 10.1088/1748-3190/11/3/031001
25.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
John Wiley and Sons
,
West Sussex
.
26.
Akçakaya
,
H.
, and
Gören Sümer
,
L.
,
2014
, “
Robust Control of Variable Speed Autonomous Underwater Vehicle
,”
Adv. Robot.
,
28
(
9
), pp.
1
11
. 10.1080/01691864.2013.854444
27.
Pan
,
C.-Z.
,
Yang
,
S. X.
,
Lai
,
X.-Z.
, and
Zhou
,
L.
,
2014
, “
An Efficient Neural Network Based Tracking Controller for Autonomous Underwater Vehicles Subject to Unknown Dynamics
,”
Proceedings of the 26th Chinese Control and Decision Conference (CCDC)
,
Changsha, China
,
May 31
,
IEEE
, pp.
3300
3305
.
28.
DeVries
,
L.
,
Kutzer
,
M.
,
Richmond
,
R.
, and
Bass
,
A.
,
2018
, “
Design, Modeling, and Experimental Drag Characterization of a Bio-Inspired, Shape-Adapting Underwater Vehicle
,”
Proceedings of the ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference (IDETC/CIA)
,
Quebec City, Canada
,
Aug. 26–29
, pp.
1
9
.
29.
y Alvarado
,
P. V.
,
Chin
,
S.
,
Larson
,
W.
,
Mazumdar
,
A.
, and
Youcef-Toumi
,
K.
,
2010
, “
A Soft Body Under-Actuated Approach to Multi Degree of Freedom Biomimetic Robots: A Stingray Example
,”
Proceedings of the 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Tokyo, Japan
,
Sept. 26–29
, pp.
473
478
.
30.
Moses
,
M. S.
,
Kutzer
,
M. D. M.
,
Ma
,
H.
, and
Armand
,
M.
,
2013
, “
A Continuum Manipulator Made of Interlocking Fibers
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
,
May 6–10
, pp.
4008
4015
.
31.
Cowan
,
L. S.
, and
Walker
,
I. D.
,
2008
, “
‘Soft’ Continuum Robots—The Interaction of Continuous and Discrete Elements
,”
Artificial Life XI (ALIFE): Proceedings of the 11th International Conference Simulation & Synthesis of Living Systems
,
Winchester, UK
,
Aug. 5–8
, pp.
126
133
.
32.
Hibbeler
,
R. C.
,
1997
,
Mechanics of Materials
,
Prentice-Hall Inc.
,
Englewood Cliffs, NJ
.
33.
Kasdin
,
N.
, and
Paley
,
D. A.
,
2011
,
Engineering Dynamics: A Comprehensive Introduction
,
Princeton University Press
,
Princeton, NJ
.
34.
Keller
,
S. R.
,
1979
, “
On the Surface Area of the Ellipsoid
,”
Math. Comput.
,
33
(
145
), pp.
310
310
. 10.1090/S0025-5718-1979-0514826-4
35.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
This content is only available via PDF.
You do not currently have access to this content.