Abstract

Currently, flexible surfaces enabled to be actuated by robotic arms are experiencing high interest and demand for robotic applications in various areas such as healthcare, automotive, aerospace, and manufacturing. However, their design and control thus far has largely been based on “trial and error” methods requiring multiple trials and/or high levels of user specialization. Robust methods to realize flexible surfaces with the ability to deform into large curvatures therefore require a reliable, validated model that takes into account many physical and mechanical properties including elasticity, material characteristics, gravity, external forces, and thickness shear effects. The derivation of such a model would then enable the further development of predictive-based control methods for flexible robotic surfaces. This paper presents a lumped-mass model for flexible surfaces undergoing large deformation due to actuation by continuum robotic arms. The resulting model includes mechanical and physical properties for both the surface and actuation elements to predict deformation in multiple curvature directions and actuation configurations. The model is validated against an experimental system where measured displacements between the experimental and modeling results showed considerable agreement with a mean error magnitude of about 1% of the length of the surface at the final deformed shapes.

References

References
1.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
. 10.1177/0278364910368147
2.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
. 10.1109/TRO.2015.2489500
3.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
2
), pp.
99
117
. 10.1155/2008/520417
4.
Walker
,
I. D.
,
Dawson
,
D. M.
,
Flash
,
T.
,
Grasso
,
F.
,
Hanlon
,
R.
,
Hochner
,
B.
,
Kier
,
W.
,
Pagano
,
C.
,
Rahn
,
C.
, and
Zhang
,
Q.
,
2005
, “
Continuum Robot Arms Inspired by Cephalopods
,”
Event: Defense and Security, Proc. of SPIE Vol. 5804, Unmanned Ground Vehicle Technology VII
,
Orlando, FL
,
May 27
.
5.
McMahan
,
W.
, and
Walker
,
I. D.
,
2009
, “
Octopus-Inspired Grasp Synergies for Continuum Manipulators
,”
IEEE International Conference on Robotics and Biomimetics
,
Bangkok, Thailand
,
Feb. 21–26
, pp.
945
950
.
6.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
Rob., IEEE Trans.
,
22
(
1
), pp.
43
55
. 10.1109/TRO.2005.861458
7.
Bailly
,
Y.
,
Amirat
,
Y.
, and
Fried
,
G.
,
2011
, “
Modeling and Control of a Continuum Style Microrobot for Endovascular Surgery
,”
IEEE Trans. Rob.
,
27
(
5
), pp.
1024
1030
. 10.1109/TRO.2011.2151350
8.
Godage
,
I. S.
,
Medrano-Cerda
,
G. A.
,
Branson
,
D.
,
Guglielmino
,
E.
, and
Caldwell
,
D. G.
,
2016
, “
Dynamics for Variable Length Multisection Continuum Arms
,”
Int. J. Rob. Res.
,
35
(
6
), pp.
695
772
. 10.1177/0278364915596450
9.
Conrad
,
B. L.
,
Jung
,
J.
, and
Penning
,
R. S.
,
2013
, “
Interleaved Continuum-Rigid Manipulation: An Augmented Approach for Robotic Minimally-Invasive Flexible Catheter-Based Procedures
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10, 2013
, pp.
718
724
.
10.
Habibi
,
H.
,
Land
,
P.
,
Ball
,
M. J.
,
Troncoso
,
D. A.
, and
Branson
,
D. T.
,
2018
, “
Optimal Integration of Pneumatic Artificial Muscles With Vacuum-Jammed Surfaces to Characterise a Novel Reconfigurable Moulding System
,”
J. Manuf. Processes
,
32
, pp.
241
253
. 10.1016/j.jmapro.2018.02.013
11.
Weitao
,
M.
,
2011
, “
Cost Modelling for Manufacturing of Aerospace Composites
,” M.Sc. thesis,
School of Applied Sciences, Cranfield University
,
UK
.
12.
Tsagarakis
,
N.
, and
Caldwell
,
D. G.
,
2003
, “
Development and Control of a ‘Soft-Actuated’ Exoskeleton for Use in Physiotherapy and Training
,”
Autonomous Rob.
,
15
(
1
), pp.
21
33
. 10.1023/A:1024484615192
13.
Reddy
,
J. N.
,
2007
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
14.
Grazioso
,
S.
,
Gironimo
,
G. D.
, and
Siciliano
,
B.
,
2018
, “
Analytic Solutions for the Static Equilibrium Configurations of Externally Loaded Cantilever Soft Robotic Arms
,”
IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
,
Apr. 24–28
, pp.
140
145
.
15.
Rosinger
,
H. E.
, and
Ritchie
,
I. G.
,
1977
, “
On Timoshenko’s Correction for Shear in Vibrating Isotropic Beams
,”
J. Phys. D: Appl. Phys.
,
10
(
11
), pp.
1461
1466
. 10.1088/0022-3727/10/11/009
16.
Thomson
,
W. T.
,
1981
,
Theory of Vibration With Applications
,
2nd ed.
,
Prentice-Hall
,
NJ
.
17.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
J. Appl. Mech.
,
18
, pp.
31
38
.
18.
Kano
,
T.
,
Watanabe
,
Y.
, and
Ishiguro
,
A.
,
2012
, “
Sheetbot, Two-Dimensional Sheet-Like Robot as a Tool for Constructing Universal Decentralized Control Systems
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Saint Paul, MN
,
May 14–18
, pp.
3733
3738
.
19.
Medina
,
O.
,
Shapiro
,
A.
, and
Shvalb
,
N.
,
2016
, “
Minimal Actuation for a Flat Actuated Flexible Manifold
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
698
706
. 10.1109/TRO.2016.2566640
20.
Merino
,
J.
,
Threatt
,
A. L.
,
Walker
,
I. D.
, and
Green
,
K. E.
,
2012
, “
Forward Kinematic Model for Continuum Robotic Surfaces
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Algarve, Portugal
,
Oct. 7–12
, pp.
3453
3460
.
21.
Liu
,
T.
,
Bargteil
,
A. W.
,
O’Brien
,
J. F.
, and
Kavan
,
L.
,
2013
, “
Fast Simulation of Mass-Spring Systems
,”
ACM Trans. Graphics
,
32
(
6
), pp.
1
7
. 10.1145/2508363.2508406
22.
Mesit
,
J.
,
Guha
,
R.
, and
Chaudhry
,
S.
,
2007
, “
3D Soft Body Simulation Using Mass-Spring System With Internal Pressure Force and Simplified Implicit Integration
,”
J. Comput.
,
2
(
8
), pp.
34
43
. 10.4304/jcp.2.8.34-43
23.
Guo
,
Y.
,
Kang
,
R.
,
Chen
,
L.
, and
Dai
,
J. S.
,
2015
, “
Dynamic Modeling for a Continuum Robot With Compliant Structure
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE
,
Boston
,
Aug. 2–5
, Paper No: DETC2015-46683, V05AT08A013, pp.
1
8
.
24.
Habibi
,
H.
, and
O’Connor
,
W.
,
2017
, “
Wave-Based Control of Planar Motion of Beam-Like Mass–Spring Arrays
,”
Wave Motion
,
72
, pp.
317
330
. 10.1016/j.wavemoti.2017.04.002
25.
Williams
,
J. H.
, Jr.
,
1996
,
Fundamental of Applied Dynamics
,
John Wiley & Sons
,
New York
.
26.
Anthonis
,
J.
, and
Ramon
,
H.
,
2003
, “
Comparison Between the Discrete and Finite Element Methods for Modelling an Agricultural Spray Boom—Part 1: Theoretical Derivation
,”
J. Sound Vib.
,
266
(
3
), pp.
515
534
. 10.1016/S0022-460X(03)00582-0
27.
Petyt
,
M.
,
1990
,
Introduction to Finite Element Vibration Analysis
,
Cambridge University Press
,
Cambridge
.
28.
Deng
,
Z.
,
Stommel
,
M.
, and
Xu
,
W.
,
2016
, “
A Novel Soft Machine Table for Manipulation of Delicate Objects Inspired by Caterpillar Locomotion
,”
IEEE/ASME Trans. Mech.
,
21
(
3
), pp.
1702
1710
. 10.1109/TMECH.2016.2519333
29.
Giri
,
N.
, and
Walker
,
I. D.
,
2011
, “
Three Module Lumped Element Model of a Continuum Arm Section
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sep. 25–30
.
30.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T. B.
,
Galloway
,
K. C.
,
Wood
,
R. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
778
789
. 10.1109/TRO.2015.2428504
31.
Greaves
,
G. N.
,
Greer
,
A. L.
,
Lakes
,
R. S.
, and
Rouxel
,
T.
,
2011
, “
Poisson’s Ratio and Modern Materials
,”
Nat. Mater.
,
10
(
12
), pp.
823
837
. 10.1038/nmat3134
32.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
33.
Yang
,
D.
,
Verma
,
M. S.
,
So
,
J. H.
,
Mosadegh
,
B.
,
Keplinger
,
C.
,
Lee
,
B.
,
Khashai
,
F.
,
Lossner
,
E.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2016
, “
Buckling Pneumatic Linear Actuators Inspired by Muscle
,”
Adv. Mater. Technol.
,
1
(
3
), p.
1600055
.
34.
Yang
,
C.
,
Kang
,
R.
,
Branson
,
D. T.
,
Chen
,
L.
, and
Dai
,
J. S.
,
2019
, “
Kinematics and Statics of Eccentric Soft Bending Actuators With External Payloads
,”
Mech. Mach. Theory
,
139
, pp.
526
541
. 10.1016/j.mechmachtheory.2019.05.015
35.
Case
,
J. C.
,
White
,
E. L.
, and
Kramer
,
R. K.
,
2015
, “
Soft Material Characterization for Robotic Applications
,”
Soft Rob.
,
2
(
2
), pp.
80
87
. 10.1089/soro.2015.0002
You do not currently have access to this content.