Abstract

The threefold-symmetric Bricard linkage, a special type of Bricard linkage, is able to generate spatial motion in 3D space with well-defined threefold rotational symmetries and three symmetric planes, which makes it a robust base linkage in designing many one-degrees-of-freedom (DOF) foldable structures. However, its practical applications are limited, as the design method with the consideration of the actual assembly is still an ambiguous area. In this paper, a foldable hexagonal structure based on the alternative form of the threefold-symmetric Bricard linkage is designed and manufactured. Geometric conditions for achieving the desired deployment are analyzed at first. Then the relationship among kinematic variables of the linkage and the geometric parameters of physical bars with a regular triangular cross-section are set up. Finally, an intuitive approach is presented to detect two types of physical blockages in the motion paths of deployment. The proposed method supplies a convenient way to design foldable hexagonal structures for potential practical applications.

References

References
1.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
London
.
2.
Phillips
,
J.
,
1984
,
Freedom in Machinery
, Vol.
1
,
Cambridge University Press
,
Cambridge
.
3.
Phillips
,
J.
,
1990
,
Freedom in Machinery
, Vol.
2
,
Cambridge University Press
,
Cambridge
.
4.
Lambert
,
P.
, and
Herder
,
J. L.
,
2016
, “
Parallel Robots with Configurable Platforms: Fundamental Aspects of a New Class of Robotic Architectures
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
3
), pp.
463
472
. 10.1177/0954406215602511
5.
Haouas
,
W.
,
Dahmouche
,
R.
,
Le Fort-Piat
,
N.
, and
Laurent
,
G. J.
,
2018
, “
A New Seven Degrees-of-Freedom Parallel Robot with a Foldable Platform
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
045001
. 10.1115/1.4039693
6.
Sarrus
,
P. F.
,
1853
, “
Note sur la Transformation des Mouvements Rectilignes Alternatifs, en Mouvements Circulaires, et Reciproquement
,”
Acad. Sci.
,
36
, pp.
1036
1038
.
7.
Bennett
,
G. T.
,
1903
, “
A New Mechanism
,”
Engineering
,
76
, pp.
777
778
.
8.
Bennett
,
G. T.
,
1914
, “
The Skew Isogram Mechanism
,”
Proc. London Math. Soc.
, Series, 2,
13
, pp.
151
173
. 10.1112/plms/s2-13.1.151
9.
Myard
,
F. E.
,
1931
, “
Contribution à la géométrie des systèmes articulés
,”
Bulletin de la Société Mathé France
,
59
, pp.
183
210
. 10.24033/bsmf.1179
10.
Goldberg
,
M.
,
1943
, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
Trans. ASME
,
65
, pp.
649
663
.
11.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
An Extended Myard Linkage and its Derived 6R Linkage
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052301
. 10.1115/1.2885506
12.
Bricard
,
R.
,
1897
, “
Mémoire sur la théorie de l’octaèdre articulé
,”
J. Math. Pures Appl.
,
3
, pp.
113
150
.
13.
Bricard
,
R.
,
1927
,
Leçons de cinématique Tome II Cinématique appliquée
,
Gauthier-Villars
,
Paris
.
14.
Baker
,
J. E.
,
2002
, “
Displacement–Closure Equations of the Unspecialised Double-Hooke’s-Joint Linkage
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1127
1144
. 10.1016/S0094-114X(02)00042-3
15.
Bennett
,
G. T.
,
1905
, “
The Parallel Motion of Sarrus and Some Allied Mechanisms
,”
Philos. Mag.
,
9
(
54
), pp.
803
810
.
16.
Grodzinski
,
P.
, and
M'Ewen
,
E.
,
1954
, “
Link Mechanisms in Modern Kinematics
,”
Proc. Inst. Mech. Eng.
,
168
(
1
), pp.
889
896
. 10.1243/PIME_PROC_1954_168_079_02
17.
Wohlhart
,
K.
,
1987
, “
A New 6R Space Mechanism
,”
Proceedings of the 7th World Congress on the Theory of Machines and Mechanisms
,
Sevilla, Spain
,
Sep. 17–22
, pp.
193
198
.
18.
Dietmaier
,
P.
,
1995
, “
A new 6R Space Mechanism
,”
Proceeding 9th World Congress on the Theory of Machines and Mechanisms
,
Milan, Italy
,
Aug. 29–Sep. 5
, pp.
52
56
.
19.
Mavroidis
,
C.
, and
Roth
,
B.
, “
Analysis and Synthesis of Overconstrained Mechanisms
,”
Proceedings of the 1994 ASME Design Technical Conferences
,
Minneapolis
,
MN
,
Sep. 11–14
, pp.
115
133
.
20.
Pfurner
,
M.
,
2008
, “
A New Family of Overconstrained 6R-Mechanisms
,”
EUCOMES08
,
Cassino, Italy
,
Sept. 17–20
.
21.
Song
,
C. Y.
, and
Chen
,
Y.
,
2012
, “
A Family of Mixed Double-Goldberg 6R Linkages
,”
Proc. R. Soc. London, Ser. A
,
468
(
2139
), pp.
871
890
. 10.1098/rspa.2011.0345
22.
Kong
,
X.
,
2014
, “
Type Synthesis of Single-Loop Overconstrained 6R Spatial Mechanisms for Circular Translation
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041016
. 10.1115/1.4028130
23.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. London, Ser. A
,
472
(
2190
), p.
20150846
. 10.1098/rspa.2015.0846
24.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Polyhedron Mechanisms Constructed by Connecting Spatial Single-Loop Linkages of Different Types and/or in Different Sizes Using S Joints
,”
Mech. Mach. Theory
,
124
, pp.
211
225
. 10.1016/j.mechmachtheory.2018.03.002
25.
Qi
,
X.
,
Huang
,
H.
,
Miao
,
Z.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022302
. 10.1115/1.4035003
26.
Zeng
,
Q.
, and
Ehmann
,
K. F.
,
2014
, “
Design of Parallel Hybrid-Loop Manipulators with Kinematotropic Property and Deployability
,”
Mech. Mach. Theory
,
71
, pp.
1
26
. 10.1016/j.mechmachtheory.2013.08.017
27.
Shang
,
H.
,
Wei
,
D.
,
Kang
,
R.
, and
Chen
,
Y.
,
2018
, “
Gait Analysis and Control of a Deployable Robot
,”
Mech. Mach. Theory
,
120
, pp.
107
119
. 10.1016/j.mechmachtheory.2017.09.020
28.
Yang
,
F.
, and
Chen
,
Y.
,
2018
, “
One-DOF Transformation Between Tetrahedron and Truncated Tetrahedron
,”
Mech. Mach. Theory
,
121
, pp.
169
183
. 10.1016/j.mechmachtheory.2017.10.018
29.
Xiu
,
H.
,
Wang
,
K.
,
Xu
,
T.
,
Wei
,
G.
, and
Ren
,
L.
,
2019
, “
Synthesis and Analysis of Fulleroid-Like Deployable Archimedean Mechanisms Based on an Overconstrained Eight-Bar Linkage
,”
Mech. Mach. Theory
,
137
, pp.
476
508
. 10.1016/j.mechmachtheory.2019.03.004
30.
Crawford
,
R. F.
,
Hedgepeth
,
J. M.
,
Preiswerk
,
P. R.
,
Astro Research
,
C.
, and
Ames Research
,
C.
,
1975
,
Spoked Wheels to Deploy Large Surfaces in Space : Weight Estimates for Solar Arrays
,
National Aeronautics and Space Administration; [Springfield, VA., For Sale by the National Technical Information Service]
,
Washington, DC
.
31.
Pellegrino
,
S.
,
Green
,
C.
,
Guest
,
S. D.
, and
Watt
,
A.
,
2000
,
SAR Advanced Deployable Structure
,
University of Cambridge
,
Cambridge
.
32.
Chen
,
Y.
, and
You
,
Z.
,
2006
, “
Square Deployable Frames for Space Applications. Part 1: Theory
,”
Proc. Inst. Mech. Eng., Part G
,
220
(
G4
), pp.
347
354
. 10.1243/09544100JAERO68
33.
Chen
,
Y.
, and
You
,
Z.
,
2007
, “
Square Deployable Frames for Space Applications. Part 2: Realization
,”
Proc. Inst. Mech. Eng., Part G
,
221
(
G1
), pp.
37
45
. 10.1243/09544100JAERO100
34.
Viquerat
,
A. D.
,
Hutt
,
T.
, and
Guest
,
S. D.
,
2013
, “
A Plane Symmetric 6R Foldable Ring
,”
Mech. Mach. Theory
,
63
, pp.
73
88
. 10.1016/j.mechmachtheory.2012.12.004
35.
Viquerat
,
A. D.
,
2012
,
Polynomial Continuation in the Design of Deployable Structures
,
University of Cambridge
,
Cambridge
.
36.
Viquerat
,
A. D.
, and
Guest
,
S. D.
,
2014
, “
Designing Folding Rings Using Polynomial Continuation
,”
ASME J. Mech. Rob.
,
6
(
1
), pp.
261
276
. 10.1115/1.4025857
37.
Gan
,
W.
, and
Pellegrino
,
S.
,
2003
, “
Closed-Loop Deployable Structures
,”
44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
American Institute of Aeronautics and Astronautics
,
Norfolk, VA
,
Apr. 7–10
, 2003-1450.
38.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
. 10.1016/j.ijsolstr.2004.09.014
39.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
40.
Chen
,
Y.
,
2003
, “
Design of Structural Mechanisms
,” Ph.D. thesis,
University of Oxford
,
London
.
You do not currently have access to this content.