Abstract

Passive compliance plays an important role in robot pick-and-place manipulation where large interaction force will be produced in response to small misalignments. In this paper, the authors report on compliance analysis and validation of a novel planar pick-and-place parallel manipulator consisting of a flexible limb. In the proposed manipulator, a planar flexible parallelogram linkage, which is coupled with a rigid one, is introduced to connect the moving and the base platforms. Since the flexible parallelogram linkage is capable of producing large deformation in both the horizontal and the vertical directions, the end effector of the manipulator can generate wide-range motions because of the flexible links. An efficient approach to the large deflection problem of flexible links is used to precisely predict the kinetostatics of the manipulator. Then, a compensation algorithm to the structural deflection of the links can be developed to actively control the position of the parallel manipulator’s end effector. The merit of the proposed flexible manipulator is its intrinsic passive compliance while performing pick-and-place tasks. A prototype is fabricated to conduct experiments for the validation of the proposed idea. The results show that the prototype has acceptable positioning accuracy, even when a large external load is exerted on its end effector. The compliance properties of the proposed flexible manipulator have also been verified in both the horizontal and the vertical directions.

References

References
1.
Whitney
,
D.
,
1987
, “
Historical Perspective and State of the Art in Robot Force Control
,”
Int. J. Rob. Res.
,
6
(
1
), pp.
3
14
. 10.1177/027836498700600101
2.
Wang
,
W.
,
Loh
,
R. N.
, and
Gu
,
E. Y.
,
1998
, “
Passive Compliance Versus Active Compliance in Robot-Based Automated Assembly Systems
,”
Ind. Robot: Int. J.
,
25
(
1
), pp.
48
57
. 10.1108/01439919810196964
3.
Lefebvre
,
T.
,
Xiao
,
J.
,
Bruyninckx
,
H.
, and
De Gersem
,
G.
,
2005
, “
Active Compliant Motion: A Survey
,”
Adv. Rob.
,
19
(
5
), pp.
479
499
. 10.1163/156855305323383767
4.
Wu
,
C.-h.
, and
Paul
,
R. P.
,
1980
, “
Manipulator Compliance Based on Joint Torque Control
,”
19th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes
,
Albuquerque, NM
,
Dec. 10–12
, pp.
88
94
.
5.
Craig
,
J. J.
, and
Raibert
,
M. H.
,
1979
, “
A Systematic Method of Hybrid Position/Force Control of a Manipulator
,”
COMPSAC 79. Proceedings of the Computer Software and The IEEE Computer Society’s Third International Applications Conference
,
Chicago, IL
,
Nov. 6–8
, pp.
446
451
.
6.
Salisbury
,
J. K.
,
1980
, “
Active Stiffness Control of a Manipulator in Cartesian Coordinates
,”
19th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes
,
Albuquerque, NM
,
Dec. 10–12
, pp.
95
100
.
7.
Goertz
,
R. C.
,
1952
, “
Fundamentals of General-Purpose Remote Manipulators
,”
Nucleonics
,
10
(
11
), pp.
36
42
.
8.
Siciliano
,
B.
, and
Villani
,
L.
,
2012
,
Robot Force Control
, Vol.
540
,
Springer Science & Business Media
,
New York
.
9.
Mason
,
M. T.
,
1981
, “
Compliance and Force Control for Computer Controlled Manipulators
,”
IEEE Trans. Syst. Man Cybern.
,
11
(
6
), pp.
418
432
. 10.1109/TSMC.1981.4308708
10.
Raibert
,
M. H.
, and
Craig
,
J. J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
J. Dyn. Syst., Meas. Control
,
103
(
2
), pp.
126
133
. 10.1115/1.3139652
11.
Mills
,
J. K.
, and
Goldenberg
,
A. A.
,
1989
, “
Force and Position Control of Manipulators During Constrained Motion Tasks
,”
IEEE Trans. Rob. Autom.
,
5
(
1
), pp.
30
46
. 10.1109/70.88015
12.
Khatib
,
O.
,
1987
, “
A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,”
IEEE J. Rob. Autom.
,
3
(
1
), pp.
43
53
. 10.1109/JRA.1987.1087068
13.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part I—Theory Part II—Implementation Part III—Application
,”
J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
8
16
. 10.1115/1.3140713
14.
Kazerooni
,
H.
,
Houpt
,
P.
, and
Sheridan
,
T.
,
1986
, “
The Fundamental Concepts of Robust Compliant Motion for Robot Manipulators
,”
Proceedings of the 1986 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10
, pp.
418
427
.
15.
Adams
,
R. J.
, and
Hannaford
,
B.
,
1999
, “
Stable Haptic Interaction With Virtual Environments
,”
IEEE Trans. Rob. Autom.
,
15
(
3
), pp.
465
474
. 10.1109/70.768179
16.
Caccavale
,
F.
, and
Villani
,
L.
,
2001
, “
An Impedance Control Strategy for Cooperative Manipulation
,”
Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No. 01TH8556)
,
Como
,
July 8–12
, pp.
343
348
.
17.
Zeng
,
G.
, and
Hemami
,
A.
,
1997
, “
An Overview of Robot Force Control
,”
Robotica
,
15
(
5
), pp.
473
482
. 10.1017/S026357479700057X
18.
Hogan
,
N.
, and
Buerger
,
S. P.
,
2004
,
Robotics and Automation Handbook
,
CRC Press
,
New York
, pp.
375
398
(Chapter: Impedance and Interaction Control).
19.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
,
Springer
,
New York
.
20.
Goris
,
K.
,
Saldien
,
J.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2011
, “
How to Achieve the Huggable Behavior of the Social Robot Probo? A Reflection on the Actuators
,”
Mechatronics
,
21
(
3
), pp.
490
500
. 10.1016/j.mechatronics.2011.01.001
21.
Bicchi
,
A.
, and
Tonietti
,
G.
,
2004
, “
Fast and “Soft-Arm” Tactics [Robot Arm Design]
,”
IEEE Rob. Autom. Mag.
,
11
(
2
), pp.
22
33
. 10.1109/MRA.2004.1310939
22.
Park
,
J.-J.
, and
Song
,
J.-B.
,
2010
, “
A Nonlinear Stiffness Safe Joint Mechanism Design for Human Robot Interaction
,”
ASME J. Mech. Des.
,
132
(
6
), p.
061005
. 10.1115/1.4001666
23.
Ham
,
Van
,
Sugar
,
R.
,
Vanderborght
,
T. G.
,
Hollander
,
B.
,
Lefeber
,
K. W.
, D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
. 10.1109/MRA.2009.933629
24.
Rourke
,
J. M.
, and
Whitney
,
D. E.
,
1985
, “
Remote Center Compliance Device
,
Dec.
3
,” US Patent 4,556,203.
25.
Whitney
,
D. E.
,
1982
, “
Quasi-Static Assembly of Compliantly Supported Rigid Parts
,”
J. Dyn. Syst. Meas. Control
,
104
(
1
), pp.
65
77
. 10.1115/1.3149634
26.
Whitney
,
D.
, and
Rourke
,
J.
,
1986
, “
Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances
,”
J. Dyn. Syst. Meas. Control
,
108
(
3
), pp.
223
232
. 10.1115/1.3143771
27.
Havlík
,
Š.
,
1983
, “
A New Elastic Structure for a Compliant Robot Wrist
,”
Robotica
,
1
(
2
), pp.
95
102
. 10.1017/S0263574700001235
28.
Ciblak
,
N.
, and
Lipkin
,
H.
,
2003
, “
Design and Analysis of Remote Center of Compliance Structures
,”
J. Rob. Syst.
,
20
(
8
), pp.
415
427
. 10.1002/rob.10096
29.
Lee
,
S.
,
2005
, “
Development of a New Variable Remote Center Compliance (VRCC) With Modified Elastomer Shear Pad (ESP) for Robot Assembly
,”
IEEE Trans. Autom. Sci. Eng.
,
2
(
2
), pp.
193
197
. 10.1109/TASE.2005.844437
30.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
, pp.
399
406
.
31.
Yu
,
H.
,
Huang
,
S.
,
Chen
,
G.
,
Pan
,
Y.
, and
Guo
,
Z.
,
2015
, “
Human–Robot Interaction Control of Rehabilitation Robots With Series Elastic Actuators
,”
IEEE Trans. Rob.
,
31
(
5
), pp.
1089
1100
. 10.1109/TRO.2015.2457314
32.
Refour
,
E.
,
Sebastian
,
B.
, and
Ben-Tzvi
,
P.
,
2018
, “
Two-Digit Robotic Exoskeleton Glove Mechanism: Design and Integration
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025002
. 10.1115/1.4038775
33.
Garcia
,
E.
,
Arevalo
,
J. C.
,
Cestari
,
M.
, and
Sanz-Merodio
,
D.
,
2015
, “
On the Technological Instantiation of a Biomimetic Leg Concept for Agile Quadrupedal Locomotion
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031005
. 10.1115/1.4028306
34.
Choi
,
J.
,
Hong
,
S.
,
Lee
,
W.
,
Kang
,
S.
, and
Kim
,
M.
,
2011
, “
A Robot Joint With Variable Stiffness Using Leaf Springs
,”
IEEE Trans. Rob.
,
27
(
2
), pp.
229
238
. 10.1109/TRO.2010.2100450
35.
Kuo
,
P.-H.
, and
Deshpande
,
A. D.
,
2016
, “
A Novel Joint Design for Robotic Hands With Humanlike Nonlinear Compliance
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021004
. 10.1115/1.4031300
36.
Zhao
,
Y.
,
Yu
,
J.
,
Wang
,
H.
,
Chen
,
G.
, and
Lai
,
X.
,
2017
, “
Design of an Electromagnetic Prismatic Joint With Variable Stiffness
,”
Ind. Robot: Int. J.
,
44
(
2
), pp.
222
230
. 10.1108/IR-09-2016-0249
37.
Eskandary
,
P. K.
,
Belzile
,
B.
, and
Angeles
,
J.
,
2019
, “
Trajectory-Planning and Normalized-Variable Control for Parallel Pick-and-Place Robots
,”
ASME J. Mech. Rob.
,
11
(
3
), pp.
1
14
.
38.
Wu
,
G.
,
Bai
,
S.
, and
Hjørnet
,
P.
,
2016
, “
Architecture Optimization of a Parallel Schönflies-Motion Robot for Pick-and-Place Applications in a Predefined Workspace
,”
Mech. Mach. Theory
,
106
, pp.
148
165
. 10.1016/j.mechmachtheory.2016.09.005
39.
Huang
,
T.
,
Bai
,
P.
,
Mei
,
J.
, and
Chetwynd
,
D. G.
,
2016
, “
Tolerance Design and Kinematic Calibration of a Four-Degrees-of-Freedom Pick-and-Place Parallel Robot
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061018
. 10.1115/1.4034788
40.
Wu
,
J.
,
Chen
,
X.
, and
Wang
,
L.
,
2015
, “
Design and Dynamics of a Novel Solar Tracker With Parallel Mechanism
,”
IEEE/ASME Trans. Mech.
,
21
(
1
), pp.
88
97
.
41.
Wu
,
J.
,
Gao
,
Y.
,
Zhang
,
B.
, and
Wang
,
L.
,
2017
, “
Workspace and Dynamic Performance Evaluation of the Parallel Manipulators in a Spray-Painting Equipment
,”
Rob. Comput. Int. Manuf.
,
44
, pp.
199
207
. 10.1016/j.rcim.2016.09.002
42.
Wu
,
J.
,
Yu
,
G.
,
Gao
,
Y.
, and
Wang
,
L.
,
2018
, “
Mechatronics Modeling and Vibration Analysis of a 2-dof Parallel Manipulator in a 5-dof Hybrid Machine Tool
,”
Mech. Mach. Theory
,
121
, pp.
430
445
. 10.1016/j.mechmachtheory.2017.10.023
43.
Chen
,
G.
,
Zhang
,
Z.
, and
Wang
,
H.
,
2018
, “
A General Approach to the Large Deflection Problems of Spatial Flexible Rods Using Principal Axes Decomposition of Compliance Matrices
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031012
. 10.1115/1.4039223
44.
Chen
,
G.
,
Wang
,
H.
,
Lin
,
Z.
, and
Lai
,
X.
,
2015
, “
The Principal Axes Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
191
207
. 10.1109/TRO.2015.2389415
45.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
46.
Portman
,
V. T.
,
2011
, “
Stiffness Evaluation of Machines and Robots: Minimum Collinear Stiffness Value Approach
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011015
. 10.1115/1.4003444
You do not currently have access to this content.