Abstract

This study provides a type of soft vacuum-actuated rotary actuator. The structures in the actuator are based on different elastomeric structures that comprise a number of interacting elastic radial beams, elastic circumferential beams, and interconnected, deformable sector ring structure air chambers. When negative pressure is applied to the structure, the radial beams bend reversibly into serpentine shapes until adjacent circumferential beams contact each other. This bending results in a large change in the circumferential angle of the structure, but a smaller change in its radial width. Thus, the structure produces rotational motion in its circumferential direction. The design, fabrication, and mechanical analysis of the actuator are introduced, respectively. Moreover, finite element simulation analysis and experimental testing are carried out to study the corresponding relations between the air pressure, rotation angle, and force of the actuator. In addition, the stimulation results and the experimental results of the actuator are statistically analyzed by statistical product and service solutions (spss) statistical software. The test results of the experimental platform are highly correlated with the results of the finite element simulation.

References

References
1.
Majidi
,
C.
,
2014
, “
Soft Robotics: A Perspective—Current Trends and Prospects for the Future
,”
Soft Rob.
,
1
(
1
), pp.
5
11
. 10.1089/soro.2013.0001
2.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H. J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021007
. 10.1115/1.4029497
3.
Boonvisut
,
P.
,
Jackson
,
R.
, and
Cavuşoğlu
,
M. C.
,
2013
, “
Estimation of Soft Tissue Mechanical Parameters From Robotic Manipulation Data
,”
IEEE/ASME Trans. Mechatron.
,
18
(
5
), pp.
1602
1611
. 10.1109/TMECH.2012.2209673
4.
Laschi
,
C.
, and
Cianchetti
,
M.
,
2014
, “
Soft Robotics: New Perspectives for Robot Bodyware and Control
,”
Front. Bioeng. Biotechnol.
,
2
(
7
), p.
3
. 10.3389/fbioe.2014.00003
5.
Laschi
,
C.
,
Cianchetti
,
M.
,
Mazzolai
,
B.
,
Margheri
,
L.
,
Follador
,
M.
, and
Dario
,
P.
,
2012
, “
Soft Robot Arm Inspired by the Octopus
,”
Adv. Rob.
,
26
(
7
), pp.
709
727
. 10.1163/156855312X626343
6.
Girard
,
A.
,
Bigué
,
J. P. L.
,
O’Brien
,
B. M.
,
Gisby
,
T. A.
,
Anderson
,
I. A.
, and
Plante
,
J. S.
,
2014
, “
Soft Two-Degree-of-Freedom Dielectric Elastomer Position Sensor Exhibiting Linear Behavior
,”
IEEE/ASME Trans. Mechatron.
,
20
(
1
), pp.
105
114
. 10.1109/TMECH.2014.2307006
7.
Onal
,
C. D.
,
Tolley
,
M. T.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2015
, “
Origami-Inspired Printed Robots
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2214
2221
. 10.1109/TMECH.2014.2369854
8.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
. 10.1155/2008/520417
9.
Bao
,
G.
,
Fang
,
H.
,
Chen
,
L.
,
Wan
,
Y.
,
Xu
,
F.
,
Yang
,
Q.
, and
Zhang
,
L.
,
2018
, “
Soft Robotics: Academic Insights and Perspectives Through Bibliometric Analysis
,”
Soft Rob.
,
5
(
3
), pp.
229
241
. 10.1089/soro.2017.0135
10.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: A Bioinspired Evolution in Robotics
,”
Trends Biotechnol.
,
31
(
5
), pp.
287
294
. 10.1016/j.tibtech.2013.03.002
11.
Correll
,
N.
,
Önal
,
Ç. D.
,
Liang
,
H.
,
Schoenfeld
,
E.
, and
Rus
,
D.
,
2014
, “
Soft Autonomous Materials—Using Active Elasticity and Embedded Distributed Computation
,”
Springer Tracts in Advanced Robotics
, Vol.
79
,
Springer
,
Berlin, Heidelberg
, pp.
227
240
. 10.1007/978-3-642-28572-1_16
12.
Polygerinos
,
P.
,
Correll
,
N.
,
Morin
,
S. A.
,
Mosadegh
,
B.
,
Onal
,
C. D.
,
Petersen
,
K.
,
Cianchetti
,
M.
,
Tolley
,
M. T.
, and
Shepherd
,
R. F.
,
2017
, “
Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices: Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction
,”
Adv. Eng. Mater.
,
19
(
12
), p.
e201700016
. 10.1002/adem.201700016
13.
Seok
,
S.
,
Onal
,
C. D.
,
Cho
,
K. J.
,
Wood
,
R. J.
,
Rus
,
D.
, and
Kim
,
S.
,
2013
, “
Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators
,”
IEEE/ASME Trans. Mechatron.
,
18
(
5
), pp.
1485
1497
. 10.1109/TMECH.2012.2204070
14.
Tondu
,
B. L.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
Control Syst. IEEE
,
20
(
2
), pp.
15
38
. 10.1109/37.833638
15.
Shi
,
L.
,
Guo
,
S.
,
Li
,
M.
,
Mao
,
S.
,
Xiao
,
N.
,
Gao
,
B.
,
Song
,
Z.
, and
Asaka
,
K.
,
2012
, “
A Novel Soft Biomimetic Microrobot With Two Motion Attitudes
,”
Sensors
,
12
(
12
), p.
16732
. 10.3390/s121216732
16.
Pelrine
,
R. E.
,
Kornbluh
,
R. D.
, and
Joseph
,
J. P.
,
1998
, “
Electrostriction of Polymer Dielectrics With Compliant Electrodes as a Means of Actuation
,”
Sens. Actuators, A
,
64
(
64
), pp.
77
85
. 10.1016/S0924-4247(97)01657-9
17.
Lee
,
H.
,
Xia
,
C.
, and
Fang
,
N. X.
,
2010
, “
First Jump of Microgel: Actuation Speed Enhancement by Elastic Instability
,”
Soft Matter
,
6
(
18
), pp.
4342
4345
. 10.1039/c0sm00092b
18.
Boblan
,
I.
,
Bannasch
,
R.
,
Schwenk
,
H.
,
Prietzel
,
F.
,
Miertsch
,
L.
, and
Schulz
,
A.
,
2004
, “
A Human-Like Robot Hand and Arm With Fluidic Muscles: Biologically Inspired Construction and Functionality
,”
Embodied Artif. Intell.
3139
,
Springer
,
Berlin, Heidelberg
, pp.
160
179
. 10.1007/978-3-540-27833-7_12
19.
Wang
,
Z.
,
Polygerinos
,
P.
,
Overvelde
,
J.
,
Galloway
,
K.
, and
Walsh
,
C.
,
2017
, “
Interaction Forces of Soft Fiber Reinforced Bending Actuators
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
717
727
. 10.1109/TMECH.2016.2638468
20.
Krishna
,
S.
,
Nagarajan
,
T.
, and
Rani
,
A. M. A.
,
2011
, “
Review of Current Development of Pneumatic Artificial Muscle
,”
J. Appl. Sci.
,
11
(
10
), pp.
1749
1755
. 10.3923/jas.2012.1053.1057
21.
Noritsugu
,
T.
,
Kubota
,
M.
, and
Yoshimatsu
,
S.
,
2000
, “
Development of Pneumatic Rotary Soft Actuator
,”
Trans. J. Soc. Mech. Eng. C
,
66
(
647
), pp.
2280
2285
. 10.1299/kikaic.66.2280
22.
Nagase
,
J.
,
Wakimoto
,
S.
,
Satoh
,
T.
,
Saga
,
N.
, and
Suzumori
,
K.
,
2011
, “
Design of a Variable-Stiffness Robotic Hand Using Pneumatic Soft Rubber Actuators
,”
Smart Mater. Struct.
,
20
(
10
), p.
105015
. 10.1088/0964-1726/20/10/105015
23.
Bishop-Moser
,
J.
, and
Kota
,
S.
,
2017
, “
Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
536
545
. 10.1109/TRO.2015.2409452
24.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots
,”
J. Robot. Syst.
,
20
(
2
), pp.
45
63
. 10.1002/rob.10070
25.
Noritsugu
,
T.
,
Takaiwa
,
M.
, and
Sasaki
,
D.
,
2009
, “
Development of Power Assist Wear Using Pneumatic Rubber Artificial Muscles
,”
J. Rob. Mechatoron.
,
21
(
5
), pp.
27
31
. 10.1109/mmvip.2008.4749589
26.
Robertson
,
M. A.
,
Sadeghi
,
H.
,
Florez
,
J. M.
, and
Paik
,
J.
,
2017
, “
Soft Pneumatic Actuator Fascicles for High Force and Reliability
,”
Soft Rob.
,
4
(
1
), pp.
23
32
. 10.1089/soro.2016.0029
27.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Yang
,
X.
, and
Huang
,
Z.
,
2016
, “
Review of Materials and Structures in Soft Robotics
,”
Chin. J. Theor. Appl. Mech.
,
48
(
4
), pp.
756
766
.
28.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “Soft Robotics for Chemists,”
Angewandte Chemie International Edition
,
50
(
8
), pp.
1890
1895
.
29.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T. B.
,
Galloway
,
K. C.
,
Wood
,
R. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
778
789
. 10.1109/TRO.2015.2428504
30.
Yang
,
D.
,
Verma
,
M. S.
,
So
,
J. H.
,
Mosadegh
,
B.
,
Keplinger
,
C.
,
Lee
,
B.
,
Khashai
,
F.
,
Lossner
,
E.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2016
, “
Linear Actuators: Buckling Pneumatic Linear Actuators Inspired by Muscle (Adv. Mater. Technol. 3/2016)
,”
Adv. Mater. Technol.
,
1
(
3
), p.
1600055
. 10.1002/admt.201670016
31.
Yang
,
D.
,
Verma
,
M. S.
,
Lossner
,
E.
,
Stothers
,
D.
, and
Whitesides
,
G. M.
,
2016
, “
Negative-Pressure Soft Linear Actuator with a Mechanical Advantage
,”
Adv. Mater. Technol.
,
2
(
1
), p.
1600164
. 10.1002/admt.201600164
32.
Yang
,
D.
,
Jin
,
L.
,
Martinez
,
R. V.
,
Bertoldi
,
K.
,
Whitesides
,
G. M.
, and
Suo
,
Z.
,
2016
, “
Phase-Transforming and Switchable Metamaterials
,”
Extreme Mech. Lett.
,
6
, pp.
1
9
. 10.1016/j.eml.2015.11.004
33.
Kiguchi
,
K.
,
Kariya
,
S.
,
Watanabe
,
K.
,
Izumi
,
K.
, and
Fukuda
,
T.
,
2001
, “
An Exoskeletal Robot for Human Elbow Motion Support—Sensor Fusion, Adaptation, and Control
,”
IEEE Trans. Syst. Man Cybern. Part B: Cybern.
,
31
(
3
), p.
353
. 10.1109/3477.931520
You do not currently have access to this content.