Abstract

An increase in the interaction forces/torques at the exoskeleton–human connections due to kinematic mismatches may consequently result in the user discomfort and/or lower performance of the exoskeleton. The stiffness of the exoskeleton–human connection elements plays a key role in this issue. The purpose of this study is to assess the effects of the exoskeleton–human connection stiffness on the user comfort and limb tracking error during normal gait. A biomechanical model of the leg was built and connected to a model of an exoskeleton by elastic connections whose stiffness tensors were identified experimentally for three participants. The effects of the connection stiffness on the gait performance were investigated using two indices: discomfort index (DI) and tracking error index (TEI), which is the difference between the human joint angle and that of the exoskeleton. DI was calculated based on the mechanical energy stored in the elastic connection elements. Although an increase of the stiffness magnitude in every direction results in DI growth, the torsional stiffness of the shank connection was found to be the most sensitive for DI. TEI, on the other hand, showed both increasing and decreasing trends with the stiffness increase in different directions. It was found that there are optimal values for some connection stiffness elements, especially shank connection, possibly due to intricacy of the knee joint, that would improve both DI and TEI. For instance, the decrease of the torsional and mediolateral shank connection stiffness improved DI and TEI by an average of about 50%.

References

References
1.
Heo
,
P.
,
Gu
,
G. M.
,
Lee
,
S.-j.
,
Rhee
,
K.
, and
Kim
,
J.
,
2012
, “
Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
807
824
. 10.1007/s12541-012-0107-2
2.
Lo
,
H. S.
, and
Xie
,
S. Q.
,
2012
, “
Exoskeleton Robots for Upper-Limb Rehabilitation: State of the Art and Future Prospects
,”
Med. Eng. Phys.
,
34
(
3
), pp.
261
268
. 10.1016/j.medengphy.2011.10.004
3.
Meng
,
W.
,
Liu
,
Q.
,
Zhou
,
Z.
,
Ai
,
Q.
,
Sheng
,
B.
, and
Xie
,
S. S.
,
2015
, “
Recent Development of Mechanisms and Control Strategies for Robot-Assisted Lower Limb Rehabilitation
,”
Mechatronics
,
31
, pp.
132
145
. 10.1016/j.mechatronics.2015.04.005
4.
Yan
,
T.
,
Cempini
,
M.
,
Oddo
,
C. M.
, and
Vitiello
,
N.
,
2015
, “
Review of Assistive Strategies in Powered Lower-Limb Orthoses and Exoskeletons
,”
Rob. Autom. Syst.
,
64
(
C
), pp.
120
136
. 10.1016/j.robot.2014.09.032
5.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S.-Y.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
657
662
. 10.1115/1.2800871
6.
Suzuki
,
K.
,
Mito
,
G.
,
Kawamoto
,
H.
,
Hasegawa
,
Y.
, and
Sankai
,
Y.
,
2007
, “
Intention-Based Walking Support for Paraplegia Patients With Robot Suit HAL
,”
Adv. Rob.
,
21
(
12
), pp.
1441
1469
. 10.5772/8835
7.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE ASME Trans. Mechatron.
,
11
(
2
), pp.
128
138
. 10.1109/TMECH.2006.871087
8.
Jarrassé
,
N.
, and
Morel
,
G.
,
2012
, “
Connecting a Human Limb to an Exoskeleton
,”
IEEE Trans. Rob.
,
28
(
3
), pp.
697
709
. 10.1109/TRO.2011.2178151
9.
Schiele
,
A.
,
2008
, “
An Explicit Model to Predict and Interpret Constraint Force Creation in pHRI With Exoskeletons
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
1324
1330
.
10.
Cempini
,
M.
,
De Rossi
,
S. M. M.
,
Lenzi
,
T.
,
Vitiello
,
N.
, and
Carrozza
,
M. C.
,
2013
, “
Self-Alignment Mechanisms for Assistive Wearable Robots: A Kinetostatic Compatibility Method
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
236
250
. 10.1109/TRO.2012.2226381
11.
Beekhuis
,
J. H.
,
Westerveld
,
A. J.
,
Van Der Kooij
,
H.
, and
Stienen
,
A. H. A.
,
2013
, “
Design of a Self-Aligning 3-DOF Actuated Exoskeleton for Diagnosis and Training of Wrist and Forearm After Stroke
,”
IEEE 13th International Conference on Rehabilitation Robotics (ICORR)
,
Seattle, WA
,
June 24–26
, pp.
1
5
.
12.
Wang
,
D.
,
Lee
,
K.-M.
, and
Ji
,
J.
,
2016
, “
A Passive Gait-Based Weight-Support Lower Extremity Exoskeleton With Compliant Joints
,”
IEEE Trans. Rob.
,
32
(
4
), pp.
933
942
. 10.1109/TRO.2016.2572692
13.
Bertomeu
,
J. M. B.
,
Lois
,
J. M. B.
,
Guillem
,
R. B.
,
Pozo
, A.
P.
,
Lacuesta
,
J.
,
Mollá
,
C. G.
,
Luna
,
P. V.
, and
Pastor
,
J. P.
,
2007
, “
Development of a Hinge Compatible With the Kinematics of the Knee Joint
,”
Prosthet. Orthot. Int.
,
31
(
4
), pp.
371
383
. 10.1080/03093640601095842
14.
Jun
,
S.
,
Zhou
,
X.
,
Ramsey
,
D. K.
, and
Krovi
,
V. N.
,
2015
, “
Smart Knee Brace Design With Parallel Coupled Compliant Plate Mechanism and Pennate Elastic Band Spring
,”
ASME J. Mech. Robot.
,
7
(
4
), p.
041024
. 10.1115/1.4030653
15.
Xu
,
K.
,
Zhao
,
J.
,
Qiu
,
D.
, and
Wang
,
Y.
,
2014
, “
A Pilot Study of a Continuum Shoulder Exoskeleton for Anatomy Adaptive Assistances
,”
ASME J. Mech. Robot.
,
6
(
4
), p.
041011
. 10.1115/1.4027760
16.
Esmaeili
,
M.
,
Gamage
,
K.
,
Tan
,
E.
, and
Campolo
,
D.
,
2011
, “
Ergonomic Considerations for Anthropomorphic Wrist Exoskeletons: A Simulation Study on the Effects of Joint Misalignment
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
4905
4910
.
17.
Carignan
,
C.
,
Tang
,
J.
, and
Roderick
,
S.
,
2009
, “
Development of an Exoskeleton Haptic Interface for Virtual Task Training
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, pp.
3697
3702
.
18.
Bosch
,
T.
,
van Eck
,
J.
,
Knitel
,
K.
, and
de Looze
,
M.
,
2016
, “
The Effects of a Passive Exoskeleton on Muscle Activity, Discomfort and Endurance Time in Forward Bending Work
,”
Appl. Ergon.
,
54
, pp.
212
217
. 10.1016/j.apergo.2015.12.003
19.
Sancisi
,
N.
, and
Parenti-Castelli
,
V.
,
2010
, “
A 1-dof Parallel Spherical Wrist for the Modelling of the Knee Passive Motion
,”
Mech. Mach. Theory
,
45
(
4
), pp.
658
665
. 10.1016/j.mechmachtheory.2009.11.009
20.
Wilson
,
D.
, and
O’Connor
,
J.
,
1997
, “
A Three-Dimensional Geometric Model of the Knee for the Study of Joint Forces in Gait
,”
Gait Posture
,
5
(
2
), pp.
108
115
. 10.1016/S0966-6362(96)01080-6
21.
Parenti-Castelli
,
V.
, and
Di Gregorio
,
R.
,
2000
, “Parallel Mechanisms Applied to the Human Knee Passive Motion Simulation,”
Advances in Robot Kinematics
,
Springer
,
New York
, pp.
333
344
.
22.
Amari
,
S.-i.
,
Cichocki
,
A.
, and
Yang
,
H. H.
,
1996
, “
A New Learning Algorithm for Blind Signal Separation
,”
Proceedings of Advances in Neural Information Processing Systems
, pp.
757
763
.
23.
Nath
,
M. K.
,
2009
, “
Independent Component Analysis of Real Data
,”
2009 Seventh International Conference on Advances in Pattern Recognition
,
Kolkata, India
,
Feb. 4–6
, pp.
149
152
.
24.
Schiele
,
A.
,
2009
, “
Ergonomics of Exoskeletons: Objective Performance Metrics
,”
World Haptics 2009—3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Salt Lake City, UT
,
Mar. 18–20
, pp.
103
108
.
25.
Lafortune
,
M.
,
Cavanagh
,
P.
,
Sommer
,
H.
, and
Kalenak
,
A.
,
1992
, “
Three-Dimensional Kinematics of the Human Knee During Walking
,”
J. Biomech.
,
25
(
4
), pp.
347
357
. 10.1016/0021-9290(92)90254-X
26.
Pearl
,
J.
,
1984
,
Heuristics: Intelligent Search Strategies for Computer Problem Solving
,
Addison-Wesley Longman
,
Boston
.
You do not currently have access to this content.