Abstract

Rigid foldability is the property of an origami that folds continuously from an unfolded to a folded state without deformation in its facets. Although extensively researched, there exist no intrinsic conditions for the rigid foldability of a degree-four vertex, which is the simplest possible origami building block that folds nontrivially. In this paper, we derive a necessary and sufficient condition for the rigid foldability of a degree-four vertex and show that it can be reduced to a purely sufficient condition, which is equivalent to a known condition from the realm of spherical mechanisms. The implications of these conditions are discussed, which reveals the connection between rigid and flat foldability, the two most important mathematical notions in origami. In practice, this work further contributes to the design synthesis and analysis of deployable structures, in which the mechanics of degree-four vertices is omnipresent.

References

1.
Rogers
,
J.
,
Huang
,
Y.
,
Schmidt
,
O. G.
, and
Gracias
,
D. H.
,
2016
, “
Origami Mems and Nems
,”
MRS Bull.
,
41
(
2
), pp.
123
129
. 10.1557/mrs.2016.2
2.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
Inst. Space Astronaut. Sci. Rep.
,
618
, pp.
1
9
.
3.
Miura
,
K.
, and
Natori
,
M.
,
1985
, “
2-D Array Experiment on Board a Space Flyer Unit
,”
Space Sol. Power Rev.
,
5
(
4
), pp.
345
356
.
4.
Belcastro
,
S.-M.
, and
Hull
,
T. C.
,
2002
, “
A Mathematical Model for Non-Flat Origami
,”
Origami 3: Proceedings of the 3rd International Meeting of Origami Science, Mathematics, and Education
,
Asilomar, CA
,
Mar. 9–11, 2001
, pp.
39
51
.
5.
Watanabe
,
N.
, and
Kawaguchi
,
K.
,
2009
, “
The Method for Judging Rigid Foldability
,”
Origami 4: Proceedings of the 4th International Meeting of Origami Science, Mathematics and Education
,
Pasadena, CA
,
Sept. 8–10, 2006
, pp.
165
174
.
6.
Cai
,
J.
,
Deng
,
X.
,
Zhang
,
Y.
,
Feng
,
J.
, and
Zhou
,
Y.
,
2016
, “
Folding Behavior of a Foldable Prismatic Mast With Kresling Origami Pattern
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031004
. 10.1115/1.4032098
7.
Cai
,
J.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2016
, “
Motion Analysis of a Foldable Barrel Vault Based on Regular and Irregular Yoshimura Origami
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021017
. 10.1115/1.4031658
8.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2015
, “
Rigidly Foldable Origami Twists
,”
Origami 6: Proceedings of the 6th International Meeting of Origami Mathematics, Science, and Education
,
Tokyo
,
Aug. 10–13, 2014
, pp.
119
130
.
9.
Feng
,
H.
,
Peng
,
R.
,
Ma
,
J.
, and
Chen
,
Y.
,
2018
, “
Rigid Foldability of Generalized Triangle Twist Origami Pattern and Its Derived 6r Linkages
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051003
. 10.1115/1.4040439
10.
Chen
,
Y.
,
Feng
,
J.
, and
Liu
,
Y.
,
2016
, “
A Group-Theoretic Approach to the Mobility and Kinematic of Symmetric Over-Constrained Structures
,”
Mech. Mach. Theory
,
105
, pp.
91
107
. 10.1016/j.mechmachtheory.2016.06.004
11.
Chen
,
Y.
,
Sareh
,
P.
,
Yan
,
J.
,
Fallah
,
A. S.
, and
Feng
,
J.
,
2019
, “
An Integrated Geometric-Graph-Theoretic Approach to Representing Origami Structures and Their Corresponding Truss Frameworks
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091402
. 10.1115/1.4042791
12.
He
,
Z.
, and
Guest
,
S. D.
,
2018
. “
On Rigid Origami II: Quadrilateral Creased Papers
,” e-print arXiv:1804.06483, Accessed Apr. 17, 2018.
13.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2015
, “
Single-Degree-of-Freedom Rigidly Foldable Origami Flashers
,”
Proceedings of the IDETC/CIE
,
Boston, MA
,
Aug. 2–5, 2015
, pp.
V05BT08A043
V05BT08A043
.
14.
Liu
,
S.
,
Weilin
,
L.
,
Yan
,
C.
, and
Guoxing
,
L.
,
2016
, “
Deployable Prismatic Structures With Rigid Origami Patterns
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031002
. 10.1115/1.4031953
15.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spat. Struct.
,
50
(
3
), pp.
173
179
.
16.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium
,
Shanghai
,
Nov. 8–12
, Vol.
12
, No.
10
, pp.
458
460
.
17.
Miura
,
K.
,
1989
, “A Note on Intrinsic Geometry of Origami,”
Research of Pattern Formation
,
R.
Takaki
, ed.,
KTK Scientific Publishers
,
Tokyo
, pp.
91
102
.
18.
Huffman
,
D.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
. 10.1109/TC.1976.1674542
19.
Waitukaitis
,
S.
, and
van Hecke
,
M.
,
2016
, “
Origami Building Blocks: Generic and Special Four-Vertices
,”
Phys. Rev. E
,
93
(
2
), p.
023003
. 10.1103/PhysRevE.93.023003
20.
Abel
,
Z.
,
Cantarella
,
J.
,
Demaine
,
E. D.
,
Eppstein
,
D.
,
Hull
,
T. C.
,
Ku
,
J. S.
,
Lang
,
R. J.
, and
Tachi
,
T.
,
2016
, “
Rigid Origami Vertices: Conditions and Forcing Sets
,”
J. Comput. Geom.
,
7
(
1
), pp.
171
184
.
21.
Hull
,
T.
,
2002
, “
The Combinatorics of Flat Folds: A Survey
,”
Origami 3: Proceedings of the 3rd International Meeting of Origami Science, Mathematics, and Education
,
Asilomar, CA
,
Mar. 9–11, 2001
, pp.
29
38
.
22.
Murray
,
A. P.
, and
Larochelle
,
P.
,
1998
, “
A Classification Scheme for Planar 4r, Spherical 4r, and Spatial Rccc Linkages to Facilitate Computer Animation
,”
Proceedings of DETC’98
,
Atlanta, GA
,
Sept. 13–16
, ASME Paper No. DETC98/MECH-5887.
23.
Justin
,
J.
,
1986
, “
Mathematics of Origami, Part 9
,”
Br. Origami
,
118
, pp.
28
30
.
24.
Kawasaki
,
T.
,
1991
, “
On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami
,”
Oirgami 1: Proceedings of the 1st International Meeting of Origami Science and Technology
,
Ferrara, Italy
,
Dec. 6–7, 1989
, pp.
229
237
.
25.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
40
), pp.
12321
12326
. 10.1073/pnas.1509465112
26.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-Ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085001
. 10.1088/0964-1726/24/8/085001
27.
Balkcom
,
D. J.
, and
Mason
,
M. T.
,
2008
, “
Robotic Origami Folding
,”
Int. J. Rob. Res.
,
27
(
5
), pp.
613
627
. 10.1177/0278364908090235
28.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
9
), pp.
3276
3281
. 10.1073/pnas.1217998110
29.
Evans
,
A. A.
,
Silverberg
,
J. L.
, and
Santangelo
,
C. D.
,
2015
, “
Lattice Mechanics of Origami Tessellations
,”
Phys. Rev. E
,
92
(
1
), p.
013205
. 10.1103/PhysRevE.92.013205
30.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
. 10.1115/1.4025379
31.
Streinu
,
I.
, and
Whiteley
,
W.
,
2005
, “
Single-vertex Origami and Spherical Expansive Motion
,”
JCDCG 2004
,
Tokyo, Japan
,
Oct. 8–11
, pp.
161
173
.
32.
Cai
,
J.
,
Zhang
,
Q.
,
Feng
,
J.
, and
Xu
,
Y.
,
2019
, “
Modeling and Kinematic Path Selection of Retractable Kirigami Roof Structures
,”
Comput. Aided Civil Infrastruct. Eng.
,
34
(
4
), pp.
352
363
. 10.1111/mice.12418
33.
Savage
,
M.
, and
Strickland Hall
,
A.
,
1970
, “
Unique Descriptions of All Spherical Four-Bar Linkages
,”
J. Eng. Ind.
,
92
(
3
), pp.
559
563
. 10.1115/1.3427812
34.
Zimmermann
,
L.
,
Shea
,
K.
, and
Stanković
,
T.
,
2018
, “
Origami Sensitivity—On the Influence of Vertex Geometry
,”
Origami 7: Proceedings of the 7th International Meeting of Origami Mathematics, Science, and Education
,
Oxford
,
Sept. 5–7
, pp.
1087
1102
.
35.
Zimmermann
,
L.
,
Shea
,
K.
, and
Stanković
,
T.
,
2019
, “
A Heuristic Algorithm for Rigid Foldability
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031004
. 10.1115/1.4043048
36.
Kamrava
,
S.
,
Mousanezhad
,
D.
,
Felton
,
S. M.
, and
Vaziri
,
A.
,
2018
, “
Programmable Origami Strings
,”
Adv. Mater. Technol.
,
3
(
3
), p.
1700276
. 10.1002/admt.201700276
You do not currently have access to this content.