Abstract

Space manipulation has great prospects in aerospace applications. In this work, a multiloop robot, namely 3-R(SRS)RP multiloop mechanism, is presented. Its design, kinematics, singularity, and workspace are studied. The novel design is mainly reflected in the robot’s structure, variable section, and novel compound hinge. Given these features, the forward-displacement undertaken with a closed-loop method leads to a complex mapping diagram. Only numerical solutions are obtained in this model due to the variable section parameter λ. This variable affects kinematic performances such as bending and folding properties. Moreover, the node differential kinematics and the Jacobian matrix are solved to analyze singular configurations of the mechanism. The workspace is then evaluated via a numerical method with varying λ. The bending and folding properties and the continuous workspace of the given robot vary while changing λ. Hence, the robot has great potentials of good performances in various applications. With this robot, a multimodule manipulator with a wide range of operations, increased mobility and rigidity, variable geometry, and adaptable shape based on mission requirements can be constructed.

References

1.
Alexander
,
J. D.
, and
Young
,
K. A.
,
1970
, “
Apollo Lunar Rendezvous
,”
J. Spacecr. Rockets
,
7
(
9
), pp.
1083
1086
. 10.2514/3.30106
2.
Slysh
,
P.
, and
Kugath
,
D. A.
,
1980
, “
Large Space Structure Automated Assembly Technique
,”
J. Spacecr. Rockets
,
17
(
4
), pp.
354
362
. 10.2514/3.57749
3.
Polites
,
M. E.
,
1999
, “
Technology of Automated Rendezvous and Capture in Space
,”
J. Spacecr. Rockets
,
36
(
2
), pp.
280
291
. 10.2514/2.3443
4.
Taylor
,
L. W.
, and
Ramakrishnan
,
J.
,
1992
, “
Continuum Modeling of the Space Shuttle Remote Manipulator System
,”
Proceedings of the 31st IEEE Conference on Decision and Control
,
Tucson, AZ
,
Dec. 16–18
, pp.
626
631
.
5.
van Woerkom
,
P. Th. L. M.
, and
Misra
,
A. K.
,
1996
, “
Robotic Manipulators in Space: A Dynamics and Control Perspective
,”
Acta Astronaut.
,
38
(
4–8
), pp.
411
421
. 10.1016/0094-5765(96)00018-5
6.
James
,
F. A.
, and
Peter
,
D. S.
,
1993
, “
The Development Test Flight of the Flight Telerobotic Servicer: Design Description and Lessons Learned
,”
IEEE Trans. Rob. Autom.
,
9
(
3
), pp.
664
674
.
7.
Diftler
,
M. A.
,
Mehling
,
J. S.
,
Abdallah
,
M. E.
,
Radford
,
N. A.
,
Bridgwater
,
L. B.
,
Sanders
,
A. M.
,
Askew
,
R. S.
,
Linn
,
D. M.
,
Yamokoski
,
J. D.
,
Permenter
,
F. A.
,
Hargrave
,
B. K.
,
Platt
,
R.
,
Savely
,
R. T.
, and
Ambrose
,
R. O.
,
2011
, “
Robonaut 2—The First Humanoid Robot in Space
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
2178
2183
.
8.
Debus
,
T. J.
, and
Dougherty
,
S. P.
,
2009
, “
Overview and Performance of the Front-End Robotics Enabling Near-Term Demonstration (FREND) Robotic Arm
,”
AIAA Infotech@Aerospace Conference
,
Seattle, WA
,
Apr. 6–9
, pp.
1
12
.
9.
Bischof
,
B.
,
Kerstein
,
L.
,
Starke
,
J.
,
Guenther
,
H.
, and
Foth
,
W. -P.
,
2003
, “
ROGER-Robotic Geostationary Orbit Restorer
,”
54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law
,
Bremen, Germany
,
Sept. 29–Oct. 3
.
10.
Nakasuka
,
S.
,
Aoki
,
T.
,
Ikeda
,
I.
,
Tsuda
,
Y.
, and
Kawakatsu
,
Y.
,
2001
, “
“Furoshiki Satellite”—A Large Membrane Structure as a Novel Space System
,”
Acta Astronaut.
,
48
(
5–12
), pp.
461
468
. 10.1016/S0094-5765(01)00056-X
11.
Qi
,
X.
,
Huang
,
H.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
A Large Ring Deployable Mechanism for Space Satellite Antenna
,”
Aerosp. Sci. Technol.
,
58
, pp.
498
510
. 10.1016/j.ast.2016.09.014
12.
Lee
,
N.
,
Backes
,
P.
,
Burdick
,
J.
,
Pellegrino
,
S.
,
Fuller
,
C.
,
Hogstrom
,
K.
,
Kennedy
,
B.
,
Kim
,
J.
,
Mukherjee
,
R.
,
Seubert
,
C.
, and
Wu
,
Y.-H.
,
2016
, “
Architecture for In-Space Robotic Assembly of a Modular Space Telescope
,”
J. Astron. Telesc. Inst. Sys.
,
2
(
4
), p.
041207
. 10.1117/1.JATIS.2.4.041207
13.
Guo
,
H.
,
Song
,
X.
,
Li
,
L.
,
Deng
,
Z.
,
Liu
,
R.
, and
Geng
,
J.
,
2018
, “
Type Synthesis of Deployable Single-Loop Overconstrained Linkages Based on Bennett Linkages
,”
Mech. Mach. Theory
,
120
, pp.
1
29
. 10.1016/j.mechmachtheory.2017.09.013
14.
Huang
,
Z.
, and
Li
,
Q.
,
2003
, “
Type Synthesis of Symmetrical Lower Mobility Parallel Mechanisms Using the Constraint Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
. 10.1177/0278364903022001005
15.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech. Transm. Autom. Des.
,
105
(
4
), pp.
705
712
. 10.1115/1.3258540
16.
Tsai
,
M.-S.
,
Shiau
,
T.-N.
,
Tsai
,
Y.-S.
, and
Chang
,
T.-H.
,
2003
, “
Direct Kinematic Analysis of a 3-PRS Parallel Mechanism
,”
Mech. Mach. Theory
,
38
(
1
), pp.
71
83
. 10.1016/S0094-114X(02)00069-1
17.
Romdhane
,
L.
,
1999
, “
Design and Analysis of a Hybrid Serial-Parallel Manipulator
,”
Mech. Mach. Theory
,
34
(
7
), pp.
1037
1055
. 10.1016/S0094-114X(98)00079-2
18.
Lu
,
Y.
,
Hu
,
B.
, and
Yu
,
J. P.
,
2009
, “
Analysis of Kinematics/Statics and Workspace of a 2(SP + SPR + SPU) Serial–Parallel Manipulator
,”
Multibody Sys. Dyn.
,
21
(
4
), pp.
361
374
. 10.1007/s11044-009-9145-7
19.
Zheng
,
X. Z.
,
Bin
,
H. Z.
, and
Luo
,
Y. G.
,
2004
, “
Kinematic Analysis of a Hybrid Serial-Parallel Manipulator
,”
Int. J. Adv. Manuf. Technol.
,
23
(
11–12
), pp.
925
930
. 10.1007/s00170-003-1782-z
20.
Hu
,
B.
,
Yu
,
J.
,
Lu
,
Y.
,
Sui
,
C.
, and
Han
,
J.
,
2012
, “
Statics and Stiffness Model of Serial-Parallel Manipulator Formed by k Parallel Manipulators Connected in Series
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021012
. 10.1115/1.4006190
21.
Miura
,
K.
,
Furuya
,
H.
, and
Suzuki
,
K.
,
1985
, “
Variable Geometry Truss and Its Application to Deployable Truss and Space Crane Arm
,”
Acta Astronaut.
,
12
(
7–8
), pp.
599
607
. 10.1016/0094-5765(85)90131-6
22.
Zhao
,
Y.
,
Hu
,
S.
, and
Yang
,
Y.
,
2016
, “
Inverse Kinematics for the Variable Geometry Truss Manipulator Via a Lagrangian Dual Method
,”
Int. J. Adv. Robot. Syst.
,
13
(
6
), pp.
1
11
. 10.1177/1729881416666779
23.
Porta
,
J. M.
, and
Thomas
,
F.
,
2017
, “
Closed-Form Position Analysis of Variable Geometry Trusses
,”
Mech. Mach. Theory
,
109
, pp.
14
21
. 10.1016/j.mechmachtheory.2016.11.004
24.
Subramaniam
,
M.
, and
Kramer
,
S. N.
,
1992
, “
The Inverse Kinematic Solution of the Tetrahedron Based Variable-Geometry Truss Manipulator
,”
ASME J. Mech. Des.
,
114
(
3
), pp.
433
437
. 10.1115/1.2926570
25.
Xu
,
L. J.
,
Tian
,
G. Y.
,
Duan
,
Y.
, and
Yang
,
S. X.
,
2001
, “
Inverse Kinematic Analysis for Triple-Octahedron Variable-Geometry Truss Manipulators
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
215
(
2
), pp.
247
251
. 10.1243/0954406011520571
26.
Gates
,
M.
,
Muirhead
,
B.
,
Naasz
,
B.
,
McDonald
,
M.
,
Mazanek
,
D.
,
Stich
,
S.
,
Chodas
,
P.
, and
Reuter
,
J.
,
2015
, “
NASA’s Asteroid Redirect Mission Concept Development Summary
,”
IEEE Aerospace Conference
,
Big Sky, MT,
March 7–14
, pp.
1
13
.
27.
Hamlin
,
G. J.
, and
Sanderson
,
A. C.
,
1997
,
Tetrobot: A Modular Approach to Reconfigurable Parallel Robotics
,
Springer
,
Berlin
.
28.
Williams
,
R. L.
,
1994
, “
Kinematic Modeling of a Double Octahedral Variable Geometry Truss (VGT) as an Extensible Gimbal
,”
NASA Langley Research Center
,
Hampton, VA
, NASA Technical Memorandum 109127.
29.
Pozhbelko
,
V.
, and
Kuts
,
E.
,
2019
,
Mechanism, Machine, Robotics and Mechatronics Sciences. Mechanisms and Machine Science
,
R.
Rizk
, and
M.
Awad
, eds.,
Springer
,
Cham, Switzerland
, pp.
189
199
.
30.
Hoberman
,
C.
,
2008
, “
Geared expanding structures
,” U.S. Patent No. US7464503.
31.
Wei
,
G. W.
,
Ding
,
X. L.
, and
Dai
,
J. S.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch–Pitch Ball and its Variant
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031010
. 10.1115/1.4001730
32.
Ding
,
X. L.
,
Yang
,
Y.
, and
Dai
,
J. S.
, “
Topology and Kinematic Analysis of Color-Changing Ball
,”
Mech. Mach. Theory
,
46
(
1
), pp.
67
81
. 10.1016/j.mechmachtheory.2010.08.010
33.
Dai
,
J. S.
,
Li
,
D.
,
Zhang
,
Q.
, and
Jin
,
G.
,
2004
, “
Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis
,”
Mech. Mach. Theory
,
39
(
4
), pp.
445
458
. 10.1016/j.mechmachtheory.2003.12.004
34.
Laliberte
,
T.
, and
Gosselin
,
C. M.
,
2007
, “
Polyhedra With Articulated Faces
,”
12th IFToMM World Congress
,
Besancon, France
,
June 18–21
, pp.
18
21
.
35.
Ding
,
H.
,
Cao
,
W. A.
,
Chen
,
Z.
, and
Kecskeméthy
,
A.
,
2015
, “
Structural Synthesis of Two-Layer and Two-Loop Spatial Mechanisms With Coupling Chains
,”
Mech. Mach. Theory
,
92
, pp.
289
313
. 10.1016/j.mechmachtheory.2015.05.015
36.
Cao
,
W.
,
Ding
,
H.
,
Chen
,
Z.
, and
Zhao
,
S.
,
2016
, “
Mobility Analysis and Structural Synthesis of a Class of Spatial Mechanisms With Coupling Chains
,”
Robotica
,
34
(
11
), pp.
2467
2485
. 10.1017/S0263574715000132
37.
Ding
,
H. F.
,
Huang
,
P.
, and
Liu
,
J. F.
,
2013
, “
A Kecskemethy. Automatic Structural Synthesis of the Whole Family of Planar 3-Degrees of Freedom Closed Loop Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041006
. 10.1115/1.4024919
38.
Ding
,
H. F.
,
Huang
,
P.
,
Yang
,
W. J.
, and
Kecskeméthy
,
A.
,
2016
, “
Automatic Generation of the Complete Set of Planar Kinematic Chains With up to Six Independent Loops and up to 19 Links
,”
Mech. Mach. Theory
,
96
(
1
), pp.
75
93
. 10.1016/j.mechmachtheory.2015.09.006
39.
Li
,
C. Y.
,
Guo
,
H. W.
,
Tang
,
D. W.
,
Liu
,
R. Q.
,
Deng
,
Z.
,
Song
,
X.
, and
Zahin
,
S. I
,
2019
, “
Cell Division Method for Mobility Analysis of Multi-Loop Mechanisms
,”
Mech. Mach. Theory
,
141
, pp.
67
94
. 10.1016/j.mechmachtheory.2019.07.002
40.
Zeng
,
Q.
,
Fang
,
Y.
, and
Ehmann
,
K. F.
, “
Topological Structural Synthesis of 4-DOF Serial-Parallel Hybrid Mechanisms
,”
ASME J. Mech. Des.
,
133
(
9
), p.
091008
. 10.1115/1.4004584
41.
Shen
,
H. P.
,
Yang
,
T. L.
, and
Ma
,
L. Z.
,
2005
, “
Synthesis and Structure Analysis of Kinematic Structures of 6-dof Parallel Robotic Mechanisms
,”
Mech. Mach. Theory
,
40
(
10
), pp.
1164
1180
. 10.1016/j.mechmachtheory.2004.12.020
42.
Chaudhary
,
H.
, and
Saha
,
S. K.
,
2007
, “
Constraint Wrench Formulation for Closed-Loop Systems Using Two-Level Recursions
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1234
1242
. 10.1115/1.2779890
43.
Li
,
W.
, and
Angeles
,
J.
,
2018
, “
Full-Mobility 3-CCC Parallel-Kinematics Machines: Forward Kinematics, Singularity, Workspace and Dexterity Analyses
,”
Mech. Mach. Theory
,
126
, pp.
312
328
. 10.1016/j.mechmachtheory.2018.04.015
44.
Li
,
W.
, and
Angeles
,
J.
,
2017
, “
A Novel Three-Loop Parallel Robot with Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051003
. 10.1115/1.4037112
45.
Li
,
W.
, and
Angeles
,
J.
,
2018
, “
The Design of a 3-CPS Parallel Robot for Maximum Dexterity
,”
Mech. Mach. Theory
,
122
, pp.
279
291
. 10.1016/j.mechmachtheory.2018.01.003
46.
Rost
,
S.
,
Uhlemann
,
M.
,
Modler
,
K.
,
Sklyarenko
,
Y.
,
Schreiber
,
F.
, and
Schumacher
,
W.
,
2011
, “
On the Joint Design and Hydraulic Actuation of Octahedron VGT Robot Manipulators
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Budapest, Hungary
,
July 3–7
, pp.
92
97
.
47.
Ding
,
X. L.
,
Yang
,
Y.
, and
Dai
,
J. S.
,
2013
, “
Design and Kinematic Analysis of a Novel Prism Deployable Mechanism
,”
Mech. Mach. Theory
,
63
, pp.
35
49
. 10.1016/j.mechmachtheory.2013.01.001
48.
Yang
,
Y.
,
Peng
,
Y.
,
Pu
,
H. Y.
,
Chen
,
H. J.
,
Ding
,
X. L.
,
Chirikjian
,
G. S.
, Lyu
,
S.
,
2019
, “
Deployable Parallel Lower-Mobility Manipulators With Scissor-Like Elements
,”
Mech. Mach. Theory
,
135
, pp.
226
250
. 10.1016/j.mechmachtheory.2019.01.013
49.
Leonardis
,
D.
,
Solazzi
,
M.
,
Bortone
,
I.
, and
Frisoli
,
A.
,
2015
, “
A Wearable Fingertip Haptic Device With 3 DOF Asymmetric 3-RSR Kinematics
,”
IEEE World Haptics Conference (WHC)
,
Evanston, IL,
June 22–26
, pp.
388
393
.
50.
Zhou
,
B.
,
Fang
,
H.
,
Ren
,
L.
, and
Feng
,
Z.
,
2000
, “
Closed-Form Direct Position Kinematics Solution for a 3-RSR Platform Manipulator
,”
Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No.00EX393)
,
Hefei, China
,
June 26–July 2
, pp.
1289
1294
Vol.
2
.
51.
Gregorio
,
R. D.
,
2003
, “
Inverse Position Analysis, Workspace Determination and Position Synthesis of Parallel Manipulators With 3-RSR Topology
,”
Robotica
,
21
(
6
), pp.
627
632
. 10.1017/S0263574703005174
52.
Gregorio
,
R. D.
,
2004
, “
Kinematics of the 3-RSR Wrist
,”
IEEE Trans. Rob.
,
20
(
4
), pp.
750
753
. 10.1109/TRO.2004.829451
53.
Dunlop
,
G. R.
, and
Jones
,
T. P.
,
1997
, “
Position Analysis of a 3-DOF Parallel Manipulator
,”
Mech. Mach. Theory
,
32
(
8
), pp.
903
920
. 10.1016/S0094-114X(97)00011-6
54.
Moshaii
,
A. A.
,
Masouleh
,
M. T.
,
Zarezadeh
,
E.
, and
Farajzadeh
,
K.
,
2016
, “
Static Analysis of a 3-RRS and a 3-RSR Spherical Parallel Robots
,”
3rd RSI International Conference on Robotics and Mechatronics (ICROM)
,
Tehran, Iran
,
Oct. 7–9
, pp.
800
804
.
55.
Williams
,
R. L.
, and
Hexter
,
E. R.
,
1998
, “
Maximizing Kinematic Motion for a 3-DOF VGT Module
,”
ASME J. Mech. Des.
,
120
(
2
), pp.
333
336
. 10.1115/1.2826977
56.
Padmanabhan
,
B.
,
Arun
,
V.
, and
Reinholtz
,
C. F.
,
1992
, “
Closed-Form Inverse Kinematic Analysis of Variable-Geometry Truss Manipulators
,”
ASME J. Mech. Des.
,
114
(
3
), pp.
438
443
. 10.1115/1.2926571
57.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
. 10.1109/70.56660
58.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1998
, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
,
33
(
6
), pp.
743
760
. 10.1016/S0094-114X(97)00053-0
59.
Bohigas
,
O.
,
Zlatanov
,
D.
,
Bohigas
,
O.
,
Zlatanov
,
D.
,
Ros
,
L.
,
Manubens
,
M.
, and
Porta
,
J. M.
, “
Numerical Computation of Manipulator Singularities
,”
IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
1351
1358
60.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
Vol. 128
,
Springer
,
Berlin
.
61.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2016
, “
A Novel 4-DOF Origami Grasper With an SMA-Actuation System for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
484
498
. 10.1109/TRO.2016.2539373
You do not currently have access to this content.