Abstract

To date, most quadruped robots are either equipped with trunks that are rigid bodies or consist of blocks connected by passive joints. The kinematic performance of these quadruped robots is only determined by their legs. To release the mobility of trunks and enhance the performance of quadruped robots, this paper proposes a metamorphic quadruped robot with a moveable trunk (a planar six-bar closed-loop linkage), called MetaRobot I, which can implement active trunk motions. The robot can twist its trunk like natural quadrupeds. Through trunk twisting, the stability margin of the quadruped robot can be increased compared with that of a quadruped robot with a rigid trunk. The inner relationship between the stability margin and the twisting angle is analyzed in this paper. Finally, simulations are carried out to show the benefits facilitated by the twisting trunk to the quadruped robot.

References

References
1.
González de Santos
,
P.
,
Garcia
,
E.
, and
Estremera
,
J.
,
2007
,
Quadrupedal Locomotion: An Introduction to the Control of Four-Legged Robots
,
Springer Science & Business Media
,
London
.
2.
Kolter
,
J. Z.
, and
Ng
,
A. Y.
,
2011
, “
The Stanford Littledog: A Learning and Rapid Replanning Approach to Quadruped Locomotion
,”
Int. J. Rob. Res.
,
30
(
2
), pp.
150
174
. 10.1177/0278364910390537
3.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
Bigdog, The Rough-Terrain Quadruped Robot
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
10822
10825
. 10.3182/20080706-5-KR-1001.01833
4.
Boaventura
,
T.
,
Medrano-Cerda
,
G. A.
,
Semini
,
C.
,
Buchli
,
J.
, and
Caldwell
,
D. G.
,
2013
, “
Stability and Performance of the Compliance Controller of the Quadruped Robot HyQ
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo
,
Nov. 3–7
,
2013
, pp.
1458
1464
. 10.1109/iros.2013.6696541
5.
Kitano
,
S.
,
Hirose
,
S.
,
Endo
,
G.
, and
Fukushima
,
E. F.
,
2013
, “
Development of Lightweight Sprawling-Type Quadruped Robot Titan-Xiii and Its Dynamic Walking
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo
,
Nov. 3–7, 2013
, pp.
6025
6030
. 10.1109/iros.2013.6697231
6.
Estremera
,
J.
, and
de Santos
,
P. G.
,
2005
, “
Generating Continuous Free Crab Gaits for Quadruped Robots on Irregular Terrain
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1067
1076
. 10.1109/TRO.2005.852256
7.
Bloss
,
R.
,
2012
, “
Robot Walks on All Four Legs and Carries a Heavy Load
,”
Ind. Rob.
,
39
(
5
). https://doi.org/10.1108/ir.2012.04939eaa.005
8.
Chen
,
X.
,
Gao
,
F.
,
Qi
,
C.
,
Tian
,
X.
, and
Zhang
,
J.
,
2014
, “
Spring Parameters Design for the New Hydraulic Actuated Quadruped Robot
,”
J. Mech. Rob.
,
6
(
2
), p.
021003
. 10.1115/1.4025754
9.
Hyun
,
D. J.
,
Seok
,
S.
,
Lee
,
J.
, and
Kim
,
S.
,
2014
, “
High Speed Trot-Running: Implementation of a Hierarchical Controller Using Proprioceptive Impedance Control on the MIT Cheetah
,”
Int. J. Rob. Res.
,
33
(
11
), pp.
1417
1445
. 10.1177/0278364914532150
10.
Zhen
,
W. K.
,
Kang
,
X.
,
Zhang
,
X. S.
, and
Dai
,
J. S.
,
2016
, “
Gait Planning of a Novel Metamorphic Quadruped Robot
,”
Chin. J. Mech. Eng.
,
52
(
11
), pp.
26
33
. 10.3901/JME.2016.11.026
11.
Zhang
,
C.
,
Wang
,
X.
,
Wang
,
X.
, and
Dai
,
J. S.
,
2017
, “
Modeling for a Metamorphic Quadruped Robot With a Twisting Trunk: Kinematic and Workspace
,”
Proceedings of IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society
,
Beijing
,
Oct. 29–Nov. 29
,
2017
, pp.
6886
6892
. 10.1109/iecon.2017.8217204
12.
Zhang
,
C.
, and
Dai
,
J. S.
,
2018
, “
Continuous Static Gait With Twisting Trunk of a Metamorphic Quadruped Robot
,”
Mech. Sci.
,
9
(
1
), pp.
1
14
. 10.5194/ms-9-1-2018
13.
Park
,
S. H.
,
Kim
,
D. S.
, and
Lee
,
Y. J.
,
2005
, “
Discontinuous Spinning Gait of a Quadruped Walking Robot With Waist-Joint
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton
,
Aug. 2–6
,
2005
, pp.
2744
2749
. 10.1109/iros.2005.1544956
14.
Park
,
S.
, and
Lee
,
Y. J.
,
2007
, “
Discontinuous Zigzag Gait Planning of a Quadruped Walking Robot With a Waist-Joint
,”
Adv. Rob.
,
21
(
1–2
), pp.
143
164
. 10.1163/156855307779293733
15.
Wu
,
S.
,
Wang
,
W.
,
Wu
,
D.
,
Chen
,
C.
,
Zhu
,
P.
, and
Liu
,
R.
,
2014
, “
Analysis on GPL’s Dynamic Gait for a Gecko Inspired Climbing Robot With a Passive Waist Joint
,”
Proceedings of IEEE International Conference on Robotics and Biomimetics
,
Bali
,
Dec. 5–10
,
2014
, pp.
943
948
. 10.1109/robio.2014.7090454
16.
Pouya
,
S.
,
Khodabakhsh
,
M.
,
Spröwitz
,
A.
, and
Ijspeert
,
A.
,
2017
, “
Spinal Joint Compliance and Actuation in a Simulated Bounding Quadruped Robot
,”
Auton. Rob.
,
41
(
2
), pp.
437
452
. 10.1007/s10514-015-9540-2
17.
Zhao
,
Q.
,
Nakajima
,
K.
,
Sumioka
,
H.
,
Yu
,
X.
, and
Pfeifer
,
R.
,
2012
, “
Embodiment Enables the Spinal Engine in Quadruped Robot Locomotion
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura
,
Oct. 7–12
,
2012
, pp.
2449
2456
. 10.1109/iros.2012.6386048
18.
Khoramshahi
,
M.
,
Spröwitz
,
A.
,
Tuleu
,
A.
,
Ahmadabadi
,
M. N.
, and
Ijspeert
,
A. J.
,
2013
, “
Benefits of an Active Spine Supported Bounding Locomotion With a Small Compliant Quadruped Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Karlsruhe
,
May 6–10
,
2013
, pp.
3329
3334
. 10.1109/icra.2013.6631041
19.
Crespi
,
A.
,
Karakasiliotis
,
K.
,
Guignard
,
A.
, and
Ijspeert
,
A. J.
,
2013
, “
Salamandra Robotica II: An Amphibious Robot to Study Salamander-Like Swimming and Walking Gaits
,”
IEEE Trans. Rob.
,
29
(
2
), pp.
308
320
. 10.1109/TRO.2012.2234311
20.
Cao
,
Q.
, and
Poulakakis
,
I.
,
2015
, “
On the Energetics of Quadrupedal Running: Predicting the Metabolic Cost of Transport Via a Flexible-Torso Model
,”
Bioinspiration Biomimetics
,
10
(
5
), p.
056008
. 10.1088/1748-3190/10/5/056008
21.
Tang
,
Z.
,
Qi
,
P.
, and
Dai
,
J. S.
,
2017
, “
Mechanism Design of a Biomimetic Quadruped Robot
,”
Ind. Rob.
,
44
(
4
), pp.
512
520
. 10.1108/IR-11-2016-0310
22.
Wang
,
R.
,
Chen
,
H.
, and
Dai
,
J. S.
,
2017
, “
Dynamic Stability Study of a Novel Controllable Metamorphic Palletizing Robot Mechanism
,”
J. Mech. Eng.
,
53
(
13
), pp.
39
47
. 10.3901/JME.2017.13.039
23.
Song
,
S. M.
,
1989
, “
Gaits and Geometry of a Walking Chair for the Disabled
,”
J. Terramech.
,
26
(
3–4
), pp.
211
233
.
24.
Messuri
,
D. A.
,
1985
, “
Optimization of the Locomotion of a Legged Vehicle With Respect to Maneuverability
,”
Ph.D. dissertation
,
The Ohio State University
,
Columbus, OH
.
25.
Nagy
,
P. V.
,
1992
, “
An Investigation of Walker/Terrain Interaction
,”
Ph.D. dissertation
,
Carnegie Mellon University
,
Pittsburgh, PA
.
26.
Hirose
,
S.
,
Tsukagoshi
,
H.
, and
Yoneda
,
K.
,
2001
, “
Normalized Energy Stability Margin and Its Contour of Walking Vehicles on Rough Terrain
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Seoul, South Korea
,
May 21–26
, pp.
71
76
. http://dx.doi.org/10.1109/robot.2001.932550
27.
Figliolini
,
G.
, and
Ripa
,
V.
,
2005
, “Kinematic Model and Absolute Gait Simulation of Six-Legged Walking Robot”,
Climbing and Walking Robots
,
Springer
,
Berlin
, pp.
889
896
.
28.
Cruse
,
H.
, and
Bartling
,
C.
,
1995
, “
Movement of Joint Angles in the Legs of a Walking Insect, Carausius Morosus
,”
J. Insect Physiol.
,
41
(
9
), pp.
761
771
. 10.1016/0022-1910(95)00032-P
29.
Hirose
,
S.
,
Kikichi
,
H.
, and
Umetani
,
Y.
,
1984
, “
The Standard Circular Gait of the Quadruped Walking Vehicle
,”
J. Rob. Soc. Jpn
,
2
(
6
), pp.
545
556
. 10.7210/jrsj.2.545
You do not currently have access to this content.