Abstract

There has been an increasing interest in design and construction of deployable mechanisms (DMs) with multiple degrees of freedom (DOFs). This paper summarizes a family of deployable mechanisms that approximates a series of curves and surfaces using the polygonal approximation technique. These mechanisms are obtained by linking the two- and three-dimensional deployable units, which are constitutive of Sarrus and scissor linkages. Multiple unit mechanisms with varying sizes are assembled and alter their shape within a different family of parameterized curves and surfaces. A systematic methodology for polygonal approximation method is presented. Quadratic, semi-cubic, cubic, quartic and sextic curve boundaries, and quadric surfaces are approximated and controlled. Computer-aided design (CAD) models and kinematic simulations elucidate the mechanism’s ability to approximate a set of curves and surfaces.

References

References
1.
Wohlhart
,
K.
,
2001
, “
Regular Polyhedral Linkages
,”
2nd Workshop on Computational Kinematics
,
Seoul, Korea
,
May 20–22
, pp.
4
6
.
2.
Hoberman
,
C.
,
1991
, “
Radial Expansion/Retraction Truss Structures
,” U.S. Patent No. 5,024,031.
3.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Foldable Bar Structures
,”
Int. J. Solids Struct.
,
34
(
15
), pp.
1825
1847
. 10.1016/S0020-7683(96)00125-4
4.
Kiper
,
G.
,
Söylemez
,
E.
, and
Kişisel
,
A. Ö.
,
2008
, “
A Family of Deployable Polygons and Polyhedra
,”
Mech. Mach. Theory
,
43
(
5
), pp.
627
640
. 10.1016/j.mechmachtheory.2007.04.011
5.
Pugh
,
A.
,
1976
,
An Introduction to Tensegrity
,
University of California Press
,
Berkeley, CA
.
6.
Wei
,
G.
, and
Dai
,
J. S.
,
2012
, “
Synthesis and Construction of a Family of One-DOF Highly Overconstrained Deployable Polyhedral Pechanisms (DPMS)
,”
2012 Conference Proceeding of Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, DETC2012-70918, pp.
615
626
.
7.
St-Onge
,
D.
, and
Gosselin
,
C.
,
2016
, “
Synthesis and Design of a One Degree-of-Freedom Planar Deployable Mechanism With a Large Expansion Ratio
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021025
. 10.1115/1.4032101
8.
Huang
,
H.
,
Li
,
B.
,
Zhu
,
J.
, and
Qi
,
X.
,
2016
, “
A New Family of Bricard-Derived Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034503
. 10.1115/1.4032119
9.
Lu
,
S.
,
Zlatanov
,
D.
, and
Ding
,
X.
,
2017
, “
Approximation of Cylindrical Surfaces With Deployable Bennett Networks
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021001
. 10.1115/1.4035801
10.
Broeren
,
F.
,
van de Sandel
,
W.
,
van der Wijk
,
V.
, and
Herder
,
J.
,
2018
, “
Dilational Triangulated Shells Using Pantographs
,”
2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, Netherlands
,
June 20–22
,
IEEE
, pp.
1
6
.
11.
Gan
,
W.
, and
Pellegrino
,
S.
,
2006
, “
Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
220
(
7
), pp.
1045
1056
. 10.1243/09544062JMES245
12.
Farrugia
,
P.
,
2008
, “
Kinematic Analysis of Foldable Structures
,” Ph.D. thesis,
University of Surrey
,
Guildford, UK
.
13.
Escrig
,
F.
, and
Valcarcel
,
J. P.
,
1993
, “
Geometry of Expandable Space Structures
,”
Int. J. Space Struct.
,
8
(
1–2
), pp.
71
84
. 10.1177/0266351193008001-208
14.
Gantes
,
C. J.
,
Connor
,
J. J.
,
Logcher
,
R. D.
, and
Rosenfeld
,
Y.
,
1989
, “
Structural Analysis and Design of Deployable Structures
,”
Comput. Struct.
,
32
(
3–4
), pp.
661
669
. 10.1016/0045-7949(89)90354-4
15.
Hanaor
,
A.
, and
Levy
,
R.
,
2001
, “
Evaluation of Deployable Structures for Space Enclosures
,”
Int. J. Space Struct.
,
16
(
4
), pp.
211
229
. 10.1260/026635101760832172
16.
Lusk
,
C.
, and
Montalbano
,
P.
,
2011
, “
Design Concepts for Shape-Shifting Surfaces
,”
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
, DETC2011-47402, pp.
59
66
.
17.
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
2007
, “
Polyhedra With Articulated Faces
,”
12th IFToMM World Congress
,
Besançon, France
,
June 17–10
, pp.
17
20
.
18.
Cao
,
W.-a.
,
Yang
,
D.
, and
Ding
,
H.
,
2017
, “
A New Family of Deployable Mechanisms Derived From Two-Layer and Two-Loop Spatial Linkages With Five Revolute Pair Coupling Chains
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061016
. 10.1115/1.4038065
19.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031006
. 10.1115/1.4004029
20.
Huang
,
H.
,
Deng
,
Z.
,
Qi
,
X.
, and
Li
,
B.
,
2013
, “
Virtual Chain Approach for Mobility Analysis of Multiloop Deployable Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111002
. 10.1115/1.4025383
21.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Molfino
,
R.
, and
Zoppi
,
M.
,
2016
, “
Novel Deployable Mechanisms With Decoupled Degrees-of-Freedom
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021008
. 10.1115/1.4031639
22.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Molfino
,
R.
, and
Zoppi
,
M.
,
2014
, “Mechanisms With Decoupled Freedoms Assembled From Spatial Deployable Units,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
O.
Khatib
, eds.,
Springer
,
New York
, pp.
517
525
.
23.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Molfino
,
R.
, and
Zoppi
,
M.
,
2014
, “
Approximation and Control of Curvilinear Shapes via Deployable Mechanisms With Two Degrees of Freedom
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, DETC2014-35411, p.
V05BT08A024
.
24.
Lu
,
S.
,
Ramadoss
,
V.
,
Zlatanov
,
D.
,
Ding
,
X.
, and
Zoppi
,
M.
,
2016
, “
Construction and Control of Surfaces via Deployable Mechanisms With Three Degrees of Freedom
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, DETC2016-59977, p.
V05AT07A070
.
25.
Rourke
,
C. P.
, and
Sanderson
,
B. J.
,
2012
,
Introduction to Piecewise-Linear Topology
,
Springer Science & Business Media
,
New York
.
26.
Liu
,
Y. K.
,
Yun
,
J.
,
Li
,
X. N.
, and
Žalik
,
B.
,
2008
, “
An Efficient Approximation of Arbitrary Curves and Surfaces Using Intersecting Polylines and Meshes
,”
Adv. Eng. Softw.
,
39
(
6
), pp.
535
539
. 10.1016/j.advengsoft.2007.05.012
27.
Grigore
,
O.
, and
Veltkamp
,
R. C.
,
2003
, “
On the Implementation of Polygonal Approximation Algorithms
,”
Department of Information and Computing Sciences, Utrecht University
, Technical Report No. UU-CS-2003-005.
You do not currently have access to this content.