Abstract

Dynamics modeling is essential in the design and control of mechanical systems, the focus of the paper being redundantly actuated systems, which bring about special challenges. The authors resort to the natural orthogonal complement (NOC), based on an adaptation of screw theory, to derive the dynamics model. Benefiting from the elimination of the constraint wrenches, the NOC offers a simple, systematic alternative to the modeling of redundantly actuated mechanical systems. The optimum actuator-torque distribution is determined via Euclidean-norm minimization; then, by relying on the QR-decomposition, an efficient and robust method is produced to compute explicitly the right Moore–Penrose generalized inverse of the coefficient matrix. The methodology is illustrated via a case study involving a redundantly actuated parallel-kinematics machine with three degrees of freedom and four actuators.

References

1.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1983
, “
The Use of Kane’s Dynamical Equations in Robotics
,”
Int. J. Rob. Res.
,
2
(
3
), pp.
3
21
. 10.1177/027836498300200301
2.
Angeles
,
J.
, and
Lee
,
S. K.
,
1989
, “
The Modelling of Holonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
Trans. Can. Soc. Mech. Eng.
,
13
(
4
), pp.
81
89
. 10.1139/tcsme-1989-0014
3.
Khalil
,
W.
, and
Ibrahim
,
O.
,
2007
, “
General Solution for the Dynamic Modeling of Parallel Robots
,”
J. Intell. Rob. Syst.
,
49
(
1
), pp.
19
37
. 10.1007/s10846-007-9137-x
4.
Codourey
,
A.
, and
Burdet
,
E.
,
1997
, “
A Body-Oriented Method for Finding a Linear Form of the Dynamic Equation of Fully Parallel Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
2
,
Albuquerque, NM
,
Apr. 25–25
,
IEEE
,
New York
, pp.
1612
1618
.
5.
Wang
,
J.
, and
Gosselin
,
C. M.
,
1998
, “
A New Approach for the Dynamic Analysis of Parallel Manipulators
,”
Multibody Syst. Dyn.
,
2
(
3
), pp.
317
334
. 10.1023/A:1009740326195
6.
Tsai
,
L.-W.
,
2000
, “
Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
3
9
. 10.1115/1.533540
7.
Cheng
,
H.
,
Yiu
,
Y.-K.
, and
Li
,
Z.
,
2003
, “
Dynamics and Control of Redundantly Actuated Parallel Manipulators
,”
IEEE/ASME Trans. Mech.
,
8
(
4
), pp.
483
491
. 10.1109/TMECH.2003.820006
8.
Miller
,
K.
,
2004
, “
Optimal Design and Modeling of Spatial Parallel Manipulators
,”
Int. J. Rob. Res.
,
23
(
2
), pp.
127
140
. 10.1177/0278364904041322
9.
Mladenova
,
C. D.
,
1999
, “
Applications of Lie Group Theory to the Modeling and Control of Multibody Systems
,”
Multibody Syst. Dyn.
,
3
(
4
), pp.
367
380
. 10.1023/A:1009828931939
10.
Wang
,
J.
,
Gosselin
,
C. M.
, and
Cheng
,
L.
,
2002
, “
Modeling and Simulation of Robotic Systems With Closed Kinematic Chains Using the Virtual Spring Approach
,”
Multibody Syst. Dyn.
,
7
(
2
), pp.
145
170
. 10.1023/A:1014491204982
11.
Gallardo
,
J.
,
Rico
,
J.
,
Frisoli
,
A.
,
Checcacci
,
D.
, and
Bergamasco
,
M.
,
2003
, “
Dynamics of Parallel Manipulators by Means of Screw Theory
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1113
1131
. 10.1016/S0094-114X(03)00054-5
12.
Staicu
,
S.
, and
Zhang
,
D.
,
2008
, “
A Novel Dynamic Modelling Approach for Parallel Mechanisms Analysis
,”
Rob. Comput. Integr. Manuf.
,
24
(
1
), pp.
167
172
. 10.1016/j.rcim.2006.09.001
13.
Mendes Lopes
,
A.
, and
Almeida
,
F.
,
2009
, “
The Generalized Momentum Approach to the Dynamic Modeling of a 6-dof Parallel Manipulator
,”
Multibody Syst. Dyn.
,
21
(
2
), pp.
123
146
. 10.1007/s11044-008-9131-5
14.
Huston
,
R.
, and
Passerello
,
C.
,
1974
, “
On Constraint Equations—A New Approach
,”
ASME J. Appl. Mech.
,
41
(
4
), pp.
1130
1131
. 10.1115/1.3423452
15.
Hemami
,
H.
, and
Weimer
,
F.
,
1981
, “
Modeling of Nonholonomic Dynamic Systems With Applications
,”
ASME J. Appl. Mech.
,
48
(
1
), pp.
177
182
. 10.1115/1.3157563
16.
Wehage
,
R.
, and
Haug
,
E.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
247
255
. 10.1115/1.3256318
17.
Kamman
,
J. W.
, and
Huston
,
R.
,
1984
, “
Dynamics of Constrained Multibody Systems
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
899
903
. 10.1115/1.3167743
18.
Lipkin
,
H.
, and
Duffy
,
J.
,
1985
, “On the Geometry of Orthogonal and Reciprocal Screws,”
Theory and Practice of Robots and Manipulators
,
A.
Morecki
,
G.
Bianchi
, and
K.
Ke¸dzior
, eds.,
Springer
,
New York
, pp.
47
55
.
19.
Angeles
,
J.
,
2014
,
Fundamentals of Robotic Mechanical Systems Theory, Methods, and Algorithms
,
Springer
,
New York
.
20.
Gosselin
,
C. M.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
. 10.1115/1.4038931
21.
Wang
,
Y.
,
Belzile
,
B.
,
Angeles
,
J.
, and
Li
,
Q.
,
2019
, “
Kinematic Analysis and Optimum Design of a Novel 2PUR-2RPU Parallel Robot
,”
Mech. Mach. Theory
,
139
, pp.
407
423
. 10.1016/j.mechmachtheory.2019.05.008
22.
Constantinescu
,
D.
,
Chau
,
I.
,
DiMaio
,
S. P.
,
Filipozzi
,
L.
,
Salcudean
,
S. E.
, and
Ghassemi
,
F.
,
2000
, “
Haptic Rendering of Planar Rigid-Body Motion Using a Redundant Parallel Mechanism
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
,
San Francisco, CA
,
Apr. 24–28
,
IEEE
,
New York
, pp.
2440
2445
.
23.
Wu
,
J.
,
Wang
,
J.
,
Wang
,
L.
, and
Li
,
T.
,
2009
, “
Dynamics and Control of a Planar 3-dof Parallel Manipulator With Actuation Redundancy
,”
Mech. Mach. Theory
,
44
(
4
), pp.
835
849
. 10.1016/j.mechmachtheory.2008.04.002
24.
Xu
,
L.
,
Li
,
Q.
,
Zhang
,
N.
, and
Chen
,
Q.
,
2017
, “
Mobility, Kinematic Analysis, and Dimensional Optimization of New Three-Degrees-of-Freedom Parallel Manipulator With Actuation Redundancy
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041008
. 10.1115/1.4036517
25.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Chen
,
Y.
,
2013
, “
Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041003
. 10.1115/1.4024736
26.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2012
,
Matrix Computations
, Vol.
3
,
JHU Press
,
Baltimore, MD
.
27.
Wang
,
Y.
,
Belzile
,
B.
,
Angeles
,
J.
, and
Li
,
Q.
,
2019
, “
On the Modeling of Redundantly-Actuated Mechanical Systems
,”
Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics
,
Duisburg, Germany
,
July 15–18
,
Springer
,
New York
, pp.
172
179
.
28.
Mises
,
R.
,
1924
, “
Motorrechnung, Ein Neues Hilfsmittel Der Mechanik
,”
J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
4
(
2
), pp.
155
181
. 10.1002/(ISSN)1521-4001
29.
Ghorbel
,
F.
,
Chételat
,
O.
, and
Longchamp
,
R.
,
1994
, “
A Reduced Model for Constrained Rigid Bodies With Application to Parallel Robots
,”
Proceedings of the IFAC Symposium on Robot Control
,
Capri, Italy
,
Sept. 19–21
,
Citeseer
, pp.
57
62
.
30.
Müller
,
A.
,
2005
, “
Internal Preload Control of Redundantly Actuated Parallel Manipulators—Its Application to Backlash Avoiding Control
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
668
677
. 10.1109/TRO.2004.842341
31.
Tian
,
Q.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2018
, “
A Comprehensive Survey of the Analytical, Numerical and Experimental Methodologies for Dynamics of Multibody Mechanical Systems With Clearance Or Imperfect Joints
,”
Mech. Mach. Theory
,
122
, pp.
1
57
. 10.1016/j.mechmachtheory.2017.12.002
32.
Ben-Israel
,
A.
, and
Greville
,
T. N.
,
2003
,
Generalized Inverses: Theory and Applications
, Vol.
15
,
Springer Science & Business Media
,
New York
.
33.
Siciliano
,
B.
,
1999
, “
The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-Loop Direct Kinematics Algorithm
,”
Robotica
,
17
(
4
), pp.
437
445
. 10.1017/S0263574799001678
34.
Wahl
,
J.
,
2002
, “
Articulated Tool Head
,” U.S. Patent No. 6431802.
35.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Molfino
,
R.
,
2010
, “
Kinematics Analysis of the Exechon Tripod
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
,
American Society of Mechanical Engineers
,
New York
, pp.
1381
1388
.
36.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Rob. Comput. Integr. Manuf.
,
27
(
1
), pp.
186
193
. 10.1016/j.rcim.2010.07.006
37.
Ni
,
Y.
,
Zhang
,
B.
,
Sun
,
Y.
, and
Zhang
,
Y.
,
2016
, “
Accuracy Analysis and Design of A3 Parallel Spindle Head
,”
Chin. J. Mech. Eng.
,
29
(
2
), pp.
239
249
. 10.3901/CJME.2015.1210.144
38.
Eskandary
,
P. K.
, and
Angeles
,
J.
,
2018
, “
The Dynamics of a Parallel Schönflies-Motion Generator
,”
Mech. Mach. Theory
,
119
, pp.
119
129
. 10.1016/j.mechmachtheory.2017.09.006
39.
Wang
,
L.
,
Xu
,
H.
, and
Guan
,
L.
,
2017
, “
Kinematics and Inverse Dynamics Analysis for a Novel 3-PUU Parallel Mechanism
,”
Robotica
,
35
(
10
), pp.
2018
2035
. 10.1017/S0263574716000692
40.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2008
,
Trajectory Planning for Automatic Machines and Robots
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.