Abstract

The simultaneous control of force and motion is important in everyday activities when humans interact with objects. While many studies have analyzed the control of movement within a perturbing force field, few have investigated its dual aspects of controlling a contact force in nonisometric conditions. The mechanism by which the central nervous system controls forces during movements is still unclear, and it can be elucidated by estimating the mechanical properties of the arm during tasks with concurrent motion and contact force goals. We investigate how arm mechanics change when a force control task is accomplished during low-frequency positional perturbations of the arm. Contrary to many force regulation algorithms implemented in robotics, where contact impedance is decreased to reduce force fluctuations in response to position disturbances, we observed a steady increase of arm endpoint stiffness as the task progressed. Based on this evidence, we propose a theoretical framework suggesting that an internal model of the perturbing trajectory is formed. We observed that force regulation in the presence of predictable positional disturbances is implemented using a position control strategy together with the modulation of the endpoint stiffness magnitude, where the direction of the endpoint stiffness ellipse's major axis is oriented toward the desired force.

References

References
1.
Buneo
,
C. A.
, and
Andersen
,
R. A.
,
2006
, “
The Posterior Parietal Cortex: Sensorimotor Interface for the Planning and Online Control of Visually Guided Movements
,”
Neuropsychologia
,
44
(
13
), pp.
2594
2606
. 10.1016/j.neuropsychologia.2005.10.011
2.
Georgopoulos
,
A.
,
Ashe
,
J.
,
Smyrnis
,
N.
, and
Taira
,
M.
,
1992
, “
The Motor Cortex and the Coding of Force
,”
Science
,
256
(
5064
), pp.
1692
1695
. 10.1126/science.256.5064.1692
3.
Hamel-Pâquet
,
C.
,
Sergio
,
L. E.
, and
Kalaska
,
J. F.
,
2006
, “
Parietal Area 5 Activity Does Not Reflect the Differential Time-Course of Motor Output Kinetics During Arm-Reaching and Isometric-Force Tasks
,”
J. Neurophysiol.
,
95
(
6
), pp.
3353
3370
. 10.1152/jn.00789.2005
4.
Sergio
,
L. E.
, and
Kalaska
,
J. F.
,
1998
, “
Changes in the Temporal Pattern of Primary Motor Cortex Activity in a Directional Isometric Force Versus Limb Movement Task
,”
J. Neurophysiol.
,
80
(
3
), pp.
1577
1583
. 10.1152/jn.1998.80.3.1577
5.
Torres
,
E.
, and
Andersen
,
R.
,
2006
, “
Space Time Separation During Obstacle-Avoidance Learning in Monkeys
,”
J. Neurophysiol.
,
96
(
5
), pp.
2613
2632
. 10.1152/jn.00188.2006
6.
Raibert
,
M. H.
, and
Craig
,
J. J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
J. Dyn. Syst. Meas. Control
,
103
(
2
), pp.
126
133
. 10.1115/1.3139652
7.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation. Parts I, II, III
,”
J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
1
24
. 10.1115/1.3140702
8.
Mason
,
M. T.
,
1986
, “
Mechanics and Planning of Manipulator Pushing Operations
,”
Int. J.Rob. Res.
,
5
(
3
), pp.
53
71
. 10.1177/027836498600500303
9.
Yoshikawa
,
T.
,
1987
, “
Dynamic Hybrid Position/Force Control of Robot Manipulators–Description of Hand Constraints and Calculation of Joint Driving Force
,”
Rob. Autom. IEEE J.
,
3
(
5
), pp.
386
392
. 10.1109/JRA.1987.1087120
10.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Pittsburgh, PA
,
Aug. 5–9
, pp.
399
406
, Vol.
391
.
11.
Mason
,
M. T.
,
1981
, “
Compliance and Force Control for Computer Controlled Manipulators
,”
IEEE Trans. Syst. Man Cybern.
,
11
(
6
), pp.
418
432
. 10.1109/TSMC.1981.4308708
12.
Mussa-Ivaldi
,
F. A.
,
Hogan
,
N.
, and
Bizzi
,
E.
,
1985
, “
Neural, Mechanical, and Geometric Factors Subserving arm Posture in Humans
,”
J. Neurosci.
,
5
(
10
), pp.
2732
2732
. 10.1523/JNEUROSCI.05-10-02732.1985
13.
Burdet
,
E.
,
Osu
,
R.
,
Franklin
,
D. W.
,
Milner
,
T. E.
, and
Kawato
,
M.
,
2001
, “
The Central Nervous System Stabilizes Unstable Dynamics by Learning Optimal Impedance
,”
Nature
,
414
(
6862
), pp.
446
449
. 10.1038/35106566
14.
Mitrovic
,
D.
,
Klanke
,
S.
,
Osu
,
R.
,
Kawato
,
M.
, and
Vijayakumar
,
S.
,
2010
, “
A Computational Model of Limb Impedance Control Based on Principles of Internal Model Uncertainty
,”
PLoS One
,
5
(
10
), p.
e13601
. 10.1371/journal.pone.0013601
15.
Chib
,
V. S.
,
Krutky
,
M. A.
,
Lynch
,
K. M.
, and
Mussa-Ivaldi
,
F. A.
,
2009
, “
The Separate Neural Control of Hand Movements and Contact Forces
,”
J. Neurosci.
,
29
(
12
), pp.
3939
3947
. 10.1523/JNEUROSCI.5856-08.2009
16.
Cianchetti
,
F. A.
, and
Valero-Cuevas
,
F. J.
,
2010
, “
Anticipatory Control of Motion-to-Force Transitions With the Fingertips Adapts Optimally to Task Difficulty
,”
J. Neurophysiol.
,
103
(
1
), pp.
108
116
. 10.1152/jn.00233.2009
17.
Mugge
,
W.
,
Abbink
,
D. A.
,
Schouten
,
A. C.
,
Dewald
,
J. P. A.
, and
van der Helm
,
F. C. T.
,
2010
, “
A Rigorous Model of Reflex Function Indicates That Position and Force Feedback Are Flexibly Tuned to Position and Force Tasks
,”
Exp. Brain Res.
,
200
(
3–4
), pp.
325
340
. 10.1007/s00221-009-1985-0
18.
Wong
,
J.
,
Wilson
,
E. T.
,
Malfait
,
N.
, and
Gribble
,
P. L.
,
2009
, “
Limb Stiffness is Modulated With Spatial Accuracy Requirements During Movement in the Absence of Destabilizing Forces
,”
J. Neurophysiol.
,
101
(
3
), pp.
1542
1549
. 10.1152/jn.91188.2008
19.
Shadmehr
,
R.
, and
Mussa-Ivaldi
,
F.
,
1994
, “
Adaptive Representation of Dynamics During Learning of a Motor Task
,”
J. Neurosci.
,
14
(
5
), pp.
3208
3224
. 10.1523/JNEUROSCI.14-05-03208.1994
20.
Lackner
,
J. R.
, and
Dizio
,
P.
,
1994
, “
Rapid Adaptation to Coriolis Force Perturbations of Arm Trajectory
,”
J. Neurophysiol.
,
72
(
1
), pp.
299
313
. 10.1152/jn.1994.72.1.299
21.
Guigon
,
E.
,
Baraduc
,
P.
, and
Desmurget
,
M.
,
2007
, “
Coding of Movement- and Force-Related Information in Primate Primary Motor Cortex: A Computational Approach
,”
Eur. J. Neurosci.
,
26
(
1
), pp.
250
260
. 10.1111/j.1460-9568.2007.05634.x
22.
Intveld
,
R. W.
,
Dann
,
B.
,
Michaels
,
J. A.
, and
Scherberger
,
H.
,
2018
, “
Neural Coding of Intended and Executed Grasp Force in Macaque Areas AIP, F5, and M1
,”
Sci. Rep.
,
8
(
1
), p.
17985
. 10.1038/s41598-018-35488-z
23.
Cowper-Smith
,
C. D.
,
Lau
,
E. Y. Y.
,
Helmick
,
C. A.
,
Eskes
,
G. A.
, and
Westwood
,
D. A.
,
2010
, “
Neural Coding of Movement Direction in the Healthy Human Brain
,”
PLoS One
,
5
(
10
), p.
e13330
. 10.1371/journal.pone.0013330
24.
Tankus
,
A.
,
Yeshurun
,
Y.
,
Flash
,
T.
, and
Fried
,
I.
,
2009
, “
Encoding of Speed and Direction of Movement in the Human Supplementary Motor Area
,”
J. Neurosurg.
,
110
(
6
), pp.
1304
1316
. 10.3171/2008.10.JNS08466
25.
Ferrari-Toniolo
,
S.
,
Visco-Comandini
,
F.
,
Papazachariadis
,
O.
,
Caminiti
,
R.
, and
Battaglia-Mayer
,
A.
,
2015
, “
Posterior Parietal Cortex Encoding of Dynamic Hand Force Underlying Hand–Object Interaction
,”
J. Neurosci.
,
35
(
31
), p.
10899
. 10.1523/JNEUROSCI.4696-14.2015
26.
Osu
,
R.
, and
Gomi
,
H.
,
1999
, “
Multijoint Muscle Regulation Mechanisms Examined by Measured Human Arm Stiffness and EMG Signals
,”
J. Neurophysiol.
,
81
(
4
), pp.
1458
1468
. 10.1152/jn.1999.81.4.1458
27.
Flash
,
T.
, and
Mussa-Ivaldi
,
F.
,
1990
, “
Human Arm Stiffness Characteristics During the Maintenance of Posture
,”
Exp. Brain Res.
,
82
(
2
), pp.
315
326
. 10.1007/BF00231251
28.
Weiss
,
P. L.
,
Hunter
,
I. W.
, and
Kearney
,
R. E.
,
1988
, “
Human Ankle Joint Stiffness Over the Full Range of Muscle Activation Levels
,”
J. Biomech.
,
21
(
7
), pp.
539
544
. 10.1016/0021-9290(88)90217-5
29.
Darainy
,
M.
,
Malfait
,
N.
,
Gribble
,
P. L.
,
Towhidkhah
,
F.
, and
Ostry
,
D. J.
,
2004
, “
Learning to Control Arm Stiffness Under Static Conditions
,”
J. Neurophysiol.
,
92
(
6
), pp.
3344
3350
. 10.1152/jn.00596.2004
30.
Shin
,
D.
,
Kim
,
J.
, and
Koike
,
Y.
,
2009
, “
A Myokinetic Arm Model for Estimating Joint Torque and Stiffness From EMG Signals During Maintained Posture
,”
J. Neurophysiol.
,
101
(
1
), pp.
387
401
. 10.1152/jn.00584.2007
31.
Osu
,
R.
,
Franklin
,
D. W.
,
Kato
,
H.
,
Gomi
,
H.
,
Domen
,
K.
,
Yoshioka
,
T.
, and
Kawato
,
M.
,
2002
, “
Short- and Long-Term Changes in Joint Co-Contraction Associated With Motor Learning as Revealed From Surface EMG
,”
J. Neurophysiol.
,
88
(
2
), pp.
991
1004
. 10.1152/jn.2002.88.2.991
32.
Perreault
,
E. J.
,
Kirsch
,
R. F.
, and
Crago
,
P. E.
,
2001
, “
Effects of Voluntary Force Generation on the Elastic Components of Endpoint Stiffness
,”
Exp. Brain Res.
,
141
(
3
), pp.
312
323
. 10.1007/s002210100880
33.
Gribble
,
P. L.
,
Mullin
,
L. I.
,
Cothros
,
N.
, and
Mattar
,
A.
,
2003
, “
Role of Cocontraction in Arm Movement Accuracy
,”
J. Neurophysiol.
,
89
(
5
), pp.
2396
2405
. 10.1152/jn.01020.2002
34.
Piovesan
,
D.
,
Pierobon
,
A.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2013
, “
Experimental Measure of Arm Stiffness During Single Reaching Movements With a Time-Frequency Analysis
,”
J. Neurophysiol.
,
110
(
10
), pp.
2484
2496
. 10.1152/jn.01013.2012
35.
van der Linde
,
R. Q.
, and
Lammertse
,
P.
,
2003
, “
HapticMaster—A Generic Force Controlled Robot for Human Interaction
,”
Ind. Robot Int. J.
,
30
(
6
), pp.
515
524
. 10.1108/01439910310506783
36.
Craig
,
J. J.
, and
Raibert
,
M.
,
1979
, “
A Systematic Method of Hybrid Position/Force Control of a Manipulator
,”
COMPSAC 79. Proceedings. Computer Software and The IEEE Computer Society's Third International Applications Conference, 1979
,
Chicago, IL
,
Nov. 6–8
, pp.
446
451
.
37.
Jingguo
,
W.
, and
Yangmin
,
L.
,
2010
, “
Hybrid Impedance Control of a 3-DOF Robotic Arm Used for Rehabilitation Treatment
,”
2010 IEEE Conference on Automation Science and Engineering (CASE)
,
Toronto, ON, Canada
,
Aug. 21–24
, pp.
768
773
.
38.
Gomi
,
H.
, and
Kawato
,
M.
,
1997
, “
Human Arm Stiffness and Equilibrium-Point Trajectory During Multi-Joint Movement
,”
Biol. Cybern.
,
76
(
3
), pp.
163
171
. 10.1007/s004220050329
39.
Piovesan
,
D.
,
Pierobon
,
A.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2012
, “
Measuring Multi-Joint Stiffness During Single Movements: Numerical Validation of a Novel Time-Frequency Approach
,”
PLoS One
,
7
(
3
), p.
e33086
. 10.1371/journal.pone.0033086
40.
Burdet
,
E.
,
Osu
,
R.
,
Franklin
,
D. W.
,
Milner
,
T. E.
, and
Kawato
,
M.
,
1999
, “
Measuring Stiffness During Arm Movements in Various Dynamic Environments
,”
Annual Symposium on Haptic Interfaces and Virtual Environments for Teleoperator Systems
,
Nashville, TN
,
Nov. 14–19
, pp.
421
428
.
41.
Dietz
,
V.
,
Trippel
,
M.
, and
Berger
,
W.
,
1991
, “
Reflex Activity and Muscle Tone During Elbow Movements in Patients With Spastic Paresis
,”
Ann. Neurol.
,
30
(
6
), pp.
767
779
. 10.1002/ana.410300605
42.
Given
,
J. D.
,
Dewald
,
J. P. A.
, and
Rymer
,
W. Z.
,
1995
, “
Joint Dependent Passive Stiffness in Paretic and Contralateral Limbs of Spastic Patients With Hemiparetic Stroke
,”
J. Neurol., Neurosurg. Psychiatry
,
59
(
3
), pp.
271
279
. 10.1136/jnnp.59.3.271
43.
Mirbagheri
,
M. M.
,
Barbeau
,
H.
, and
Kearney
,
R. E.
,
2000
, “
Intrinsic and Reflex Contributions to Human Ankle Stiffness: Variation With Activation Level and Position
,”
Exp. Brain Res.
,
135
(
4
), pp.
423
436
. 10.1007/s002210000534
44.
Mirbagheri
,
M. M.
,
Harvey
,
R.
, and
Rymer
,
W. Z.
,
2002
, “
Mechanical Properties of the Elbow Joint in Spastic Hemiparetic Stroke Subjects
,”
Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society Engineering in Medicine and Biology
,
Houston, TX
,
Oct. 23–26
, pp.
2449
2450
.
45.
Galiana
,
L.
,
Fung
,
J.
, and
Kearney
,
R.
,
2005
, “
Identification of Intrinsic and Reflex Ankle Stiffness Components in Stroke Patients
,”
Exp. Brain Res.
,
165
(
4
), pp.
422
434
. 10.1007/s00221-005-2320-z
46.
Dolan
,
J. M.
,
Friedman
,
M. B.
, and
Nagurka
,
M. L.
,
1993
, “
Dynamic and Loaded Impedance Components in the Maintenance of Human arm Posture
,”
IEEE Trans. Syst. Man Cybern.
,
23
(
3
), pp.
698
709
. 10.1109/21.256543
47.
Hanavan
,
E. P. J.
,
1964
,
A Mathematical Model of the Human Body
,
Wright-Patterson Air Force Base
,
Dayton, OH
.
48.
Dempster
,
W. T.
,
1955
, “
Space Requirements of the Seated Operator. Geometrical, Kinematic, and Mechanical Aspects of the Body With Special Reference to the Limbs
,” No. 159,
Wright Air Development
,
Dayton, OH
.
49.
Chandler
,
R. F.
,
Clauser
,
C. E.
,
McConville
,
J. T.
,
Reynolds
,
H. M.
, and
Young
,
J. W.
,
1975
,
Investigation of Inertial Properties of the Human Body
,
Wright-Patterson Air Force Base
,
Dayton, OH
.
50.
Clauser
,
C. E.
,
McConville
,
J. T.
, and
Young
,
J. W.
,
1969
, “
Weight, Volume, and Center of Mass of Segments of the Human Body
,” No. 70,
Wright-Patterson Air Force Base
,
Dayton, OH
.
51.
McConville
,
J. T.
,
Churchill
,
T. D.
,
Kaleps
,
I.
,
Clauser
,
C. E.
, and
Cuzzi
,
J.
,
1980
, “
Anthropometric Relationships of Body and Body Segment Moments of Inertia
,”
Wright-Patterson Air Force Base
,
Dayton, OH
.
52.
Zatsiorsky
,
V.
, and
Seluyanov
,
V.
,
1983
, “The Mass and Inertia Characteristics of the Main Segments of the Human Body 30,”
International Congress of Biomechanics: Biomechanics VIII-B
,
H. A. K. K.
Matsui
, ed.,
Human Kinetics
,
Champaign, IL
, pp.
1152
1159
.
53.
Piovesan
,
D.
,
Pierobon
,
A.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2011
, “
Comparative Analysis of Methods for Estimating Arm Segment Parameters and Joint Torques From Inverse Dynamics
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031003
. 10.1115/1.4003308
54.
Zatsiorsky
,
V. M.
,
2002
, “Best Predictive Regression Equations for Estimating Inertial Properties of Body Segments in Males, Appendix A2.8,”
Kinetics of Human Motion
,
V. M.
Zatsiorsky
, ed.,
Human Kinetics
,
Champain, IL
, pp.
600
601
.
55.
de Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
. 10.1016/0021-9290(95)00178-6
56.
Rencher
,
A. C.
,
2002
,
Methods of Multivariate Analysis, Second Edition
,
John Wiley & Sons, Inc.
,
New York
.
57.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
1992
,
Numerical Recipes in C: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
58.
Darainy
,
M.
,
Towhidkhah
,
F.
, and
Ostry
,
D. J.
,
2007
, “
Control of Hand Impedance Under Static Conditions and During Reaching Movement
,”
J. Neurophysiol.
,
97
(
4
), pp.
2676
2685
. 10.1152/jn.01081.2006
59.
Avela
,
J.
,
1998
, “
Interaction Between Muscle Stiffness and Stretch Reflex Sensitivity After Long-Term Stretch-Shortening Cycle Exercise
,”
Muscle Nerve
,
21
(
9
), pp.
1224
1227
. 10.1002/(SICI)1097-4598(199809)21:9<1224::AID-MUS19>3.0.CO;2-R
60.
Toumi
,
H.
,
Poumarat
,
G.
,
Best
,
T. M.
,
Martin
,
A.
,
Fairclough
,
J.
, and
Benjamin
,
M.
,
2006
, “
Fatigue and Muscle–Tendon Stiffness After Stretch–Shortening Cycle and Isometric Exercise
,”
Appl. Physiol. Nutr. Metab.
,
31
(
5
), pp.
565
572
. 10.1139/h06-034
61.
Piovesan
,
D.
,
Pierobon
,
A.
, and
Mussa Ivaldi
,
F. A.
,
2013
, “
Critical Damping Conditions for Third Order Muscle Models: Implications for Force Control
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101010
. 10.1115/1.4025110
62.
Piovesan
,
D.
,
Morasso
,
P.
,
Giannoni
,
P.
, and
Casadio
,
M.
,
2013
, “
Arm Stiffness During Assisted Movement After Stroke: The Influence of Visual Feedback and Training
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
21
(
3
), pp.
454
465
. 10.1109/TNSRE.2012.2226915
63.
Gomi
,
H.
, and
Osu
,
R.
,
1998
, “
Task-Dependent Viscoelasticity of Human Multijoint Arm and Its Spatial Characteristics for Interaction With Environments
,”
J. Neurosci.
,
18
(
21
), pp.
8965
8978
. 10.1523/JNEUROSCI.18-21-08965.1998
64.
Gribble
,
P. L.
,
Ostry
,
D. J.
,
Sanguineti
,
V.
, and
Laboissière
,
R.
,
1998
, “
Are Complex Control Signals Required for Human Arm Movement?
,”
J. Neurophysiol.
,
79
(
3
), pp.
1409
1424
. 10.1152/jn.1998.79.3.1409
65.
Piovesan
,
D.
,
Casadio
,
M.
,
Mussa-Ivaldi
,
F. A.
, and
Morasso
,
P. G.
,
2011
, “
Multijoint Arm Stiffness During Movements Following Stroke: Implications for Robot Therapy
,”
2011 IEEE International Conference on Rehabilitation Robotics (ICORR)
,
Zurich, Switzerland
,
June 27–July 1
, pp.
1
7
.
66.
Pigeon
,
P.
,
Bortolami
,
S. B.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2003
, “
Coordinated Turn-and-Reach Movements. I. Anticipatory Compensation for Self-Generated Coriolis and Interaction Torques
,”
J. Neurophysiol.
,
89
(
1
), pp.
276
289
. 10.1152/jn.00159.2001
67.
Pigeon
,
P.
,
Bortolami
,
S. B.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2003
, “
Coordinated Turn-and-Reach Movements. II. Planning in an External Frame of Reference
,”
J. Neurophysiol.
,
89
(
1
), pp.
290
303
. 10.1152/jn.00160.2001
68.
Piovesan
,
D.
,
Morasso
,
P.
,
Giannoni
,
P.
, and
Casadio
,
M.
,
2012
, “
Arm Stiffness During Assisted Movement After Stroke: The Influence of Visual Feedback And Training
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
21
(
3
), pp.
454
465
. 10.1109/TNSRE.2012.2226915
69.
Findeisen
,
D.
,
2000
,
System Dynamics and Mechanical Vibrations: An Introduction
,
Springer
,
Berlin
.
You do not currently have access to this content.