Abstract

Smooth and efficient human–machine coordination in joint physical tasks may be realized through greater sensing and prediction of a human partner's intention to apply force to an object. In this paper, we define compliance and reliance in the context of physical human–machine coordination (pHMC) to characterize human responses in a joint object transport task. We apply an optimization framework to explain human intention and behavior. The weighting factor in the optimization problem, lambda (λ), is presented as a person's reliance on the machine in a joint physical task with varying constraints. We demonstrate that with an estimated λ, the intended two-dimensional motion of a person's trajectory can be captured. We also found a relationship between λ and trust while participants performed a familiar task with no distraction. This finding suggests a relationship between the psychological construct of trust and joint physical coordination. The extent to which λ may serve as an online measure of trust and reliance in a physical load sharing task requires further investigation under more complex task scenarios that involve greater degrees of vulnerability and uncertainty.

References

References
1.
Jarrasse
,
N.
,
Sanguineti
,
V.
, and
Burdet
,
E.
,
2014
, “
Slaves No Longer: Review on Role Assignment for Human–Robot Joint Motor Action
,”
Adapt. Behav.
,
22
(
1
), pp.
70
82
. 10.1177/1059712313481044
2.
Marsh
,
K. L.
,
Richardson
,
M. J.
, and
Schmidt
,
R. C.
,
2009
, “
Social Connection Through Joint Action and Interpersonal Coordination
,”
Top. Cogn. Sci.
,
1
(
2
), pp.
320
339
. 10.1111/j.1756-8765.2009.01022.x
3.
Li
,
Y.
,
Tee
,
K. P.
,
Chan
,
W. L.
,
Yan
,
R.
,
Chua
,
Y.
, and
Limbu
,
D. K.
,
2015
, “
Continuous Role Adaptation for Human–Robot Shared Control
,”
IEEE Trans. Robot.
,
31
(
3
), pp.
672
681
. 10.1109/TRO.2015.2419873
4.
Lee
,
J. D.
, and
See
,
K. A.
,
2004
, “
Trust in Automation: Designing for Appropriate Reliance
,”
Hum. Factors
,
46
(
1
), pp.
50
80
. 10.1518/hfes.46.1.50.30392
5.
Kucukyilmaz
,
A.
, and
Demiris
,
Y.
,
2018
, “
Learning Shared Control by Demonstration for Personalized Wheelchair Assistance
,”
IEEE Trans. Haptics
,
11
(
3
), pp.
431
442
. 10.1109/TOH.2018.2804911
6.
Granados
,
D. F. P.
,
Yamamoto
,
B. A.
,
Kamide
,
H.
,
Kinugawa
,
J.
, and
Kosuge
,
K.
,
2017
, “
Dance Teaching by a Robot: Combining Cognitive and Physical Human–Robot Interaction for Supporting the Skill Learning Process
,”
IEEE Robot. Autom. Lett.
,
2
(
3
), pp.
1452
1459
. 10.1109/LRA.2017.2671428
7.
Cherubini
,
A.
,
Passama
,
R.
,
Crosnier
,
A.
,
Lasnier
,
A.
, and
Fraisse
,
P.
,
2016
, “
Collaborative Manufacturing With Physical Human–Robot Interaction
,”
Robot. Comput. Integr. Manuf.
,
40
, pp.
1
13
. 10.1016/j.rcim.2015.12.007
8.
Erden
,
M. S.
, and
Billard
,
A.
,
2016
, “
Robotic Assistance by Impedance Compensation for Hand Movements While Manual Welding
,”
IEEE Trans. Cybern.
,
46
(
11
), pp.
2459
2472
. 10.1109/TCYB.2015.2478656
9.
Rozo
,
L.
,
Silvério
,
J.
,
Calinon
,
S.
, and
Caldwell
,
D. G.
,
2016
, “
Learning Controllers for Reactive and Proactive Behaviors in Human–Robot Collaboration
,”
Front. Robot. AI
,
3
, Article 30. 10.3389/frobt.2016.00030
10.
Rozo
,
L.
,
Bruno
,
D.
,
Calinon
,
S.
, and
Caldwell
,
D. G.
,
2015
, “
Learning Optimal Controllers in Human-Robot Cooperative Transportation Tasks With Position and Force Constraints
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 3, 2015
, pp.
1024
1030
.
11.
Li
,
Y.
,
Tee
,
K. P.
,
Yan
,
R.
,
Chan
,
W. L.
, and
Wu
,
Y.
,
2016
, “
A Framework of Human-Robot Coordination Based on Game Theory and Policy Iteration
,”
IEEE Trans. Robot.
,
32
(
6
), pp.
1408
1418
. 10.1109/TRO.2016.2597322
12.
Parasuraman
,
R.
,
Sheridan
,
T. B.
, and
Wickens
,
C. D.
,
2008
, “
Situation Awareness, Mental Workload, and Trust in Automation: Viable, Empirically Supported Cognitive Engineering Constructs
,”
J. Cogn. Eng. Decis. Making
,
2
(
2
), pp.
140
160
. 10.1518/155534308X284417
13.
Jarrassé
,
N.
,
Charalambous
,
T.
, and
Burdet
,
E.
,
2012
, “
A Framework to Describe, Analyze and Generate Interactive Motor Behaviors
,”
PLoS One
,
7
(
11
), p.
e49945
. 10.1371/journal.pone.0049945
14.
Mörtl
,
A.
,
Lawitzky
,
M.
,
Kucukyilmaz
,
A.
,
Sezgin
,
M.
,
Basdogan
,
C.
, and
Hirche
,
S.
,
2012
, “
The Role of Roles: Physical Cooperation Between Humans and Robots
,”
Int. J. Robot. Res.
,
31
(
13
), pp.
1656
1674
. 10.1177/0278364912455366
15.
Sadrfaridpour
,
B.
,
Saeidi
,
H.
,
Burke
,
J.
,
Madathil
,
K.
, and
Wang
,
Y.
,
2016
,
“Modeling and Control of Trust in Human-Robot Collaborative Manufacturing,” Robust Intelligence and Trust in Autonomous Systems
,
Springer
,
Boston, MA
, pp.
115
114
.
16.
Hancock
,
P. A.
,
Billings
,
D. R.
,
Schaefer
,
K. E.
,
Chen
,
J. Y.
,
De Visser
,
E. J.
, and
Parasuraman
,
R.
,
2011
, “
A Meta-Analysis of Factors Affecting Trust in Human-Robot Interaction
,”
Hum. Factors
,
53
(
5
), pp.
517
527
. 10.1177/0018720811417254
17.
Hoff
,
K. A.
, and
Bashir
,
M.
,
2015
, “
Trust in Automation: Integrating Empirical Evidence on Factors That Influence Trust
,”
Hum. Factors
,
57
(
3
), pp.
407
434
. 10.1177/0018720814547570
18.
Lees
,
M. N.
, and
Lee
,
J. D.
,
2007
, “
The Influence of Distraction and Driving Context on Driver Response to Imperfect Collision Warning Systems
,”
Ergonomics
,
50
(
8
), pp.
1264
1286
. 10.1080/00140130701318749
19.
Phillips
,
R. R.
, and
Madhavan
,
P.
,
2011
, “
The Effect of Distractor Modality and Processing Code on Human-Automation Interaction
,”
Cogn. Technol. Work
,
13
(
4
), pp.
233
244
. 10.1007/s10111-010-0163-2
20.
Jian
,
J. Y.
,
Bisantz
,
A. M.
, and
Drury
,
C. G.
,
2000
, “
Foundations for an Empirically Determined Scale of Trust in Automated Systems
,”
Int. J. Cogn. Ergonomics
,
4
(
1
), pp.
53
71
. 10.1207/S15327566IJCE0401_04
21.
Meyer
,
J.
,
2004
, “
Conceptual Issues in the Study of Dynamic Hazard Warnings
,”
Hum. Factors
,
46
(
4
), pp.
196
204
. 10.1518/hfes.46.2.196.37335
22.
Onnasch
,
L.
,
Wickens
,
C. D.
,
Li
,
H.
, and
Manzey
,
D.
,
2014
, “
Human Performance Consequences of Stages and Levels of Automation: An Integrated Meta-Analysis
,”
Hum. Factors
,
56
(
3
), pp.
476
488
. 10.1177/0018720813501549
23.
Kim
,
W.
,
Lee
,
J.
,
Peternel
,
L.
,
Tsagarakis
,
N.
, and
Ajoudani
,
A.
,
2018
, “
Anticipatory Robot Assistance for the Prevention of Human Static Joint Overloading in Human–Robot Collaboration
,”
IEEE Robot. Autom. Lett.
,
3
(
1
), pp.
68
75
. 10.1109/LRA.2017.2729666
24.
Jiang
,
Y.
, and
Jiang
,
Z. P.
,
2014
, “
Adaptive Dynamic Programming as a Theory of Sensorimotor Control
,”
Biol. Cybern.
,
108
(
4
), pp.
459
473
. 10.1007/s00422-014-0613-7
25.
Li
,
Y.
,
Tee
,
K. P.
,
Yan
,
R.
,
Limbu
,
D. K.
, and
Ge
,
S. S.
,
2015
, “
Shared Control of Human and Robot by Approximate Dynamic Programming
,”
2015 American Control Conference (ACC)
,
Chicago, IL
,
July 1–3
, pp.
1167
1172
.
26.
Jiang
,
Y.
, and
Jiang
,
Z. P.
,
2013
, “
Robust Adaptive Dynamic Programming for Sensorimotor Control With Signal-Dependent Noise
,”
2013 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)
,
Brooklyn, NY
,
Sept. 7
, pp.
1
6
.
27.
Shadmehr
,
R.
, and
Mussa-Ivaldi
,
F. A.
,
1994
, “
Adaptive Representation of Dynamics During Learning of a Motor Task
,”
J. Neurosci.
,
14
(
5
), pp.
3208
3224
. 10.1523/JNEUROSCI.14-05-03208.1994
28.
Salvucci
,
D. D.
,
2002
, “
Modeling Driver Distraction From Cognitive Tasks
,”
Proc. Annu. Meet. Cogn. Sci. Soc.
,
24
(
24
). https://escholarship.org/content/qt1wh9p6w0/qt1wh9p6w0.pdf
You do not currently have access to this content.