In order to exert the advantages of simplified control and integral rigidity, a novel 16-legged walking vehicle is proposed as a carrying platform based on closed-chain mechanisms. Considering the demand for mobility of one degree-of-freedom leg mechanism, we adopt the reconfigurable approach for trajectory flexibility. Serving as a walking module, the whole close-chain leg mechanism is designed to construct the walking vehicle. On the basis of kinematic analysis and sensitivity analysis, the reconfigurable leg with “gluteus maximus” is presented for increasing the obstacle-surmounting ability. In terms of the whole vehicle, the reconfiguration assignments and strategies are analyzed to satisfy the different climbing requirements. The obstacle-climbing capabilities of the legged units are evaluated through the probability analysis. In slope-climbing process, the supporting and the propelling regions for reconfiguration are discussed and obtained with two decision conditions. A series of dynamic simulations and experiments are performed to testify the walking stability, the walking speed, the steering performance, the terrain adaptability, and the obstacle-surmounting capability.

References

References
1.
Raibert
,
M. H.
,
1993
, “
Legged Robots
,”
Commun. ACM.
,
29
(
6
), pp.
499
514
.
2.
Zhang
,
C.
, and
Dai
,
J. S.
,
2018
, “
Continuous Static Gait With Twisting Trunk of a Metamorphic Quadruped Robot
,”
Mech. Sci.
,
9
(
1
), pp.
1
14
.
3.
Nansai
,
S.
,
Rojas
,
N.
,
Elara
,
M. R.
,
Sosa
,
R.
, and
Iwase
,
M.
,
2015
, “
A Novel Approach to Gait Synchronization and Transition for Reconfigurable Walking Platforms
,”
Digit. Commun. Netw.
,
1
(
2
), pp.
141
151
.
4.
Chen
,
X. B.
,
Gao
,
F.
,
Qi
,
C. K.
,
Tian
,
X. H.
, and
Zhang
,
J. Q.
,
2014
, “
Spring Parameters Design for the New Hydraulic Actuated Quadruped Robot
,”
ASME J. Mech. Robot.
,
6
(
2
), pp.
97
110
.
5.
Zhuang
,
H. C.
,
Gao
,
H. B.
,
Deng
,
Z. Q.
,
Ding
,
L.
, and
Liu
,
Z.
,
2014
, “
A Review of Heavy-Duty Legged Robots
,”
Sci. China. Technol. Sci.
,
57
(
2
), pp.
298
314
.
6.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
Bigdog, the Rough-Terrain Quadruped Robot
,”
IFAC Proceedings Volumes
,
Seoul, Korea
,
July 6–11, 2008
, 41(2), pp.
10822
10825
.
7.
Raibert
,
M.
,
2012
, “
Alphadog, the Rough-Terrain Robot
,”
Proceedings of the 15th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
,
Baltimore, MD
,
July 23–26
, p.
07
.
8.
Ananthanarayanan
,
A.
,
Azadi
,
M.
, and
Kim
,
S.
,
2012
, “
Towards a Bio-Inspired Leg Design for High-Speed Running
,”
Bioinspir. Biomim.
,
7
(
4
), p.
046005
.
9.
Semini
,
C.
,
Goldsmith
,
J.
,
Rehman
,
B. U.
,
Frigerio
,
M.
,
Barasuol
,
V.
,
Focchi
,
M.
, and
Caldwell
,
D. G.
,
2015
, “
Design Overview of the Hydraulic Quadruped Robots Hyq2MAX and Hyq2CENTAUR
,”
The Fourteenth Scandinavian International Conference on Fluid Power
,
Tampere, Finland
,
May 20–22
, pp.
1
11
.
10.
Bares
,
J. E.
, and
Wettergreen
,
D. S.
,
1999
, “
Dante II: Technical Description, Results, and Lessons Learned
,”
Int. J. Robot. Res.
,
18
(
7
), pp.
621
649
.
11.
Almeida
,
A. T. D.
, and
Khatib
,
O.
,
1998
,
Autonomous Robotic Systems
,
Springer London
,
London, England
, pp.
107
110
.
12.
Fedorov
,
D.
, and
Birglen
,
L.
,
2017
, “
Design of a Self-Adaptive Robotic Leg Using a Triggered Compliant Element
,”
IEEE Robot. Autom. Lett.
,
2
(
3
), pp.
1444
1451
.
13.
Birglen
,
L.
, and
Ruella
,
C.
,
2014
, “
Analysis and Optimization of One-Degree of Freedom Robotic Legs
,”
ASME J. Mech. Robot.
,
6
(
4
), p.
041004
.
14.
Shin
,
S. Y.
,
Deshpande
,
A. D.
, and
Sulzer
,
J.
,
2018
, “
Design of a Single Degree-of-Freedom, Adaptable Electromechanical Gait Trainer for People With Neurological Injury
,”
ASME J. Mech. Robot.
,
10
(
4
), p.
044503
.
15.
Liang
,
C. H.
,
Ceccarelli
,
M.
, and
Takeda
,
Y.
,
2012
, “
Operation Analysis of a Chebyshev-Pantograph Leg Mechanism for a Single DoF Biped Robot
,”
Front. Mech. Eng.
,
7
(
4
), pp.
357
370
.
16.
Fedorov
,
D.
, and
Birglen
,
L.
,
2015
, “
Analysis and Design of a Two Degree of Freedom Hoeckens-Pantograph Leg Mechanism
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA,
Aug. 2–5
, p.
V05BT08A079
.
17.
Jansen
,
T.
,
2007
,
The Great Pretender
,
010 Publishers
,
Rotterdam, Netherlands
.
18.
Lokhande
,
N. G.
, and
Emche
,
V. B.
,
2013
, “
Mechanical Spider by Using Klann Mechanism
,”
Int. J. Mech. Eng. Comput. Appl.
,
1
(
5
), pp.
013
016
.
19.
Ottaviano
,
E.
,
Grande
,
S.
, and
Ceccarelli
,
M.
,
2010
, “
A Biped Walking Mechanism for a Rickshaw Robot
,”
Mech. Based. Des. Struct.
,
38
(
2
), pp.
227
242
.
20.
DeMario
,
A.
, and
Zhao
,
J.
,
2018
, “
Development and Analysis of a Three-Dimensional Printed Miniature Walking Robot With Soft Joints and Links
,”
ASME J. Mech. Robot.
,
10
(
4
), p.
041005
.
21.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Design of Stephenson Linkages That Guide a Point Along a Specified Trajectory
,”
Mech. Mach. Theory
,
96
, pp.
38
51
.
22.
Liu
,
C. H.
,
Lin
,
M. H.
,
Huang
,
Y. C.
,
Pai
,
T. Y.
, and
Wang
,
C. M.
,
2017
, “
The Development of a Multi-Legged Robot Using Eight-Bar Linkages as Leg Mechanisms With Switchable Modes for Walking and Stair Climbing
,”
International Conference on Control, Automation and Robotics IEEE (ICCAR)
,
Nagoya, Japan
,
Apr. 22–24
, pp.
103
108
.
23.
Wu
,
J. X.
, and
Yao
,
Y. A.
,
2017
, “
Design and Analysis of a Novel Multi-Legged Horse-Riding Simulation Vehicle for Equine-Assisted Therapy
,”
Proc. Inst. Mech. Eng. C
,
232
(
16
), pp.
2912
2925
.
24.
Pan
,
Y.
, and
Gao
,
F.
,
2017
, “
Position Model Computational Complexity of Walking Robot With Different Parallel Leg Mechanism Topology Patterns
,”
Mech. Mach. Theory
,
107
, pp.
324
337
.
25.
Park
,
H. S.
,
Floyd
,
S.
, and
Sitti
,
M.
,
2010
, “
Roll and Pitch Motion Analysis of a Biologically Inspired Quadruped Water Runner Robot
,”
Int. J. Robot. Res.
,
29
(
10
), pp.
1281
1297
.
26.
Park
,
J.
,
Lee
,
J.
,
Lee
,
J.
,
Kim
,
K. S.
, and
Kim
,
S.
,
2014
, “
Raptor: Fast Bipedal Running and Active Tail Stabilization
,”
11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
,
Kuala Lumpur, Malaysia
,
Nov. 12–15
, p.
215
.
27.
Yan
,
H. S.
,
2012
,
Creative Design of Mechanical Devices
,
Springer Berlin
,
Berlin, Germany
.
28.
Wu
,
J. X.
,
Yao
,
Y. A.
,
Ruan
,
Q.
, and
Liu
,
X. P.
,
2016
, “
Design and Optimization of a Dual Quadruped Vehicle Based on Whole Close-Chain Mechanism
,”
Proc. Inst. Mech. Eng. C
,
231
(
19
), pp.
3601
3613
.
29.
Nansai
,
S.
,
Rojas
,
N.
,
Elara
,
M. R.
,
Sosa
,
R.
, and
Iwase
,
M.
,
2015
, “
On a Jansen Leg With Multiple Gait Patterns for Reconfigurable Walking Platforms
,”
Adv. Mech. Eng.
,
7
(
3
), pp.
1687
8140
.
30.
Sheba
,
J. K.
,
Elara
,
M.
,
Martínez-García
,
E.
, and
Le
,
T. P.
,
2016
, “
Trajectory Generation and Stability Analysis for Reconfigurable Klann Mechanism Based Walking Robot
,”
Robotics
,
5
(
3
), p.
13
.
31.
Zhang
,
Y.
,
Arakelian
,
V.
, and
Baron
,
J. P. L.
,
2017
, “
Design of a Legged Walking Robot With Adjustable Parameters
,”
Advances in Mechanism Design II: Proceedings of the XII International Conference on the Theory of Machines and Mechanisms
,
Liberec, Czech Republic
,
Sept. 6–8, 2016
, pp.
65
71
.
32.
Wu
,
J. X.
, and
Yao
,
Y. A.
,
2018
, “
Design and Analysis of a Novel Walking Vehicle Based on Leg Mechanism With Variable Topologies
,”
Mech. Mach. Theory
,
128
, pp.
663
681
.
You do not currently have access to this content.