This paper explores a class of metamorphic and reconfigurable linkages belonging to both Waldron's double-Bennett hybrid linkage and Bricard linkages, which include three novel symmetric Waldron–Bricard metamorphic and reconfigurable mechanisms, and further presents their three extended isomeric metamorphic linkages. The three novel Waldron–Bricard metamorphic and reconfigurable linkages are distinguished by line-symmetric, plane-symmetric, and line-plane-symmetric characteristics. The novel line-symmetric Waldron–Bricard metamorphic linkage with one Waldron motion branch and two general and three special line-symmetric Bricard motion branches is obtained by integrating two identical general Bennett loops. The novel plane-symmetric Waldron–Bricard reconfigurable linkage with two plane-symmetric motion branches is obtained by coalescing two equilateral Bennett loops. The novel line-plane-symmetric Waldron–Bricard metamorphic linkage with six motion branches is obtained by blending two identical equilateral Bennett loops, including the plane-symmetric Waldron motion branch, the line-plane-symmetric Bricard motion branch, the spherical 4R motion branch, and three special line-symmetric Bricard motion branches. With the isomerization that changes a mechanism structure but keeps all links and joints, each of the three novel Waldron–Bricard linkages results in an extended isomeric metamorphic linkage. This further evolves into the study of the three isomeric mechanisms. The study of these three novel metamorphic and reconfigurable mechanisms and their isomerization are carried out to demonstrate the characteristics of bifurcation and to reveal motion-branch transformation. Furthermore, by exploring the intersection of given motion branches and using the method of isomerization, more metamorphic and reconfigurable linkages can be discovered to usefully deal with transitions among possible submotions.

References

References
1.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.,
128
(
1
), pp.
220
229
.
2.
Sarrus
,
P. T.
,
1853
, “
Note Sur La Transformation Des Mouvements Rectilignes Alternatifs, En Mouvements Circulaires, Et Reciproquement
,”
Acad. Sci.
,
36
, pp.
1036
1038
.
3.
Bennett
,
G. T.
,
1903
, “
A New Mechanism
,”
Engineering
,
76
, pp.
777
778
.
4.
Bricard
,
R.
,
1927
,
Leçons De Cinématique
,
Gauthier-Villars
,
Paris, France
.
5.
Myard
,
F. E.
,
1931
, “
Contribution à La Géométrie Des Systèmes Articulés
,”
Soc. Math. France
,
59
, pp.
183
210
.
6.
Goldberg
,
M.
,
1943
, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
ASME Trans.
,
65
, pp.
649
663
.
7.
Waldron
,
K. J.
,
1968
, “
Hybrid Overconstrained Linkages
,”
J. Mech.
,
3
(
2
), pp.
73
78
.
8.
Wohlhart
,
K.
,
1991
, “
Merging Two General Goldberg 5R Linkages to Obtain a New 6R Space Mechanism
,”
Mech. Mach. Theory
,
26
(
7
), pp.
659
668
.
9.
Altmann
,
P. G.
,
1954
, “
Communications to Grodzinski P. and Mewen E.: Link Mechanisms in Modern Kinematics
,”
Proc. Inst. Mech. Eng.
,
168
(
37
), pp.
889
896
.
10.
Wohlhart
,
K.
,
1987
, “
A New 6R Space Mechanism
,”
Seventh World Congress on the Theory of Machines and Mechanisms
,
Sevilla, Spain
,
Sept. 17–22
, pp.
17
22
.
11.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,”
Recent Advances in Robot Kinematics
,
J.
Lenarcic
, and
V.
Parenti-Castelli
, eds.,
Springer
,
Dordrecht
, pp.
359
368
.
12.
Qin
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2014
, “
Multi-Furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory
,
81
(
6
), pp.
36
53
.
13.
Kang
,
X.
,
Zhang
,
X.
, and
Dai
,
J. S.
,
2019
, “
First- and Second-Order Kinematics-Based Constraint System Analysis and Reconfiguration Identification for the Queer-Square Mechanism
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011004
.
14.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
15.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1864
1876
.
16.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
17.
Ma
,
X.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2018
, “
Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages With Reconfigurable Motion Branches
,”
Mech. Mach. Theory
,
128
, pp.
628
647
.
18.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
19.
Zhang
,
K.
,
Müller
,
A.
, and
Dai
,
J. S.
,
2016
, “
A Novel Reconfigurable 7R Linkage With Multifurcation
,”
Advances in Reconfigurable Mechanisms and Robots II
,
Springer
,
Cham, Switzerland
, pp.
15
25
.
20.
Yan
,
H. S.
, and
Kuo
,
C. H.
,
2006
, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.
21.
Kong
,
X.
, and
Huang
,
C.
,
2009
, “
Type Synthesis of Single-DOF Single-Loop Mechanisms With Two Operation Modes
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
London
,
June 22–24
, pp.
136
141
.
22.
Wohlhart
,
K.
,
2010
, “
Multifunctional 7R Linkages
,”
International Symposium on Mechanisms and Machine Theory, AzCIFToMM
,
Izmir, Turkey
,
Oct. 5–8
, pp.
85
91
.
23.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
6
), pp.
743
761
.
24.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121001
.
25.
Li
,
S.
, and
Dai
,
J. S.
,
2011
, “
Augmented Adjacency Matrix for Topological Configuration of the Metamorphic Mechanisms
,”
J. Adv. Mech. Des. Syst. Manuf.
,
5
(
3
), pp.
187
198
.
26.
Li
,
S.
, and
Dai
,
J. S.
,
2012
, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031004
.
27.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2014
, “
Constraint-Plane-Based Synthesis and Topology Variation of a Class of Metamorphic Parallel Mechanisms
,”
J. Mech. Sci. Eng.
,
28
(
10
), pp.
4179
4191
.
28.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2016
, “
Variable Motion/Force Transmissibility of a Metamorphic Parallel Mechanism With Reconfigurable 3T and 3R Motion
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051001
.
29.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
30.
Pfurner
,
M.
,
2018
, “
Synthesis and Motion Analysis of a Single-Loop 8R-Chain
,”
International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Netherlands
,
June 20–22
, pp.
1
7
.
31.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.
32.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I. M.
,
2013
, “
A 6R Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach. Theory
,
70
, pp.
278
292
.
33.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Reconfiguration of the Plane-Symmetric Double-Spherical 6R Linkage With Bifurcation and Trifurcation
,”
Proc. Inst. Mech. Eng. C
,
230
(
3
), pp.
473
482
.
34.
Feng
,
H.
,
Chen
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2017
, “
Kinematic Study of the General Plane-Symmetric Bricard Linkage and Its Bifurcation Variations
,”
Mech. Mach. Theory
,
116
, pp.
89
104
.
35.
López-Custodio
,
P. C.
,
Dai
,
J. S.
, and
Rico
,
J. M.
,
2018
, “
Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Plane-Symmetric Case
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031002
.
36.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1955
, “
A Kinematic Notation for Lower Pair Mechanisms Based on Matrices
,”
ASME J Appl. Mech.
,
77
(
2
), pp.
215
221
.
37.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
38.
Baker
,
J. E.
,
1993
, “
A Comparative Survey of the Bennett-Based, 6-Revolute Kinematic Loops
,”
Mech. Mach. Theory
,
28
(
1
), pp.
83
96
.
39.
Yang
,
A. T.
, and
Freudenstein
,
F.
,
1964
, “
Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
300
308
.
40.
Roth
,
B.
,
1967
, “
On the Screw Axes and Other Special Lines Associated With Spatial Displacements of a Rigid Body
,”
ASME J. Eng. Ind.
,
89
(
1
), pp.
102
110
.
41.
Gan
,
W. W.
, and
Pellegrino
,
S.
,
2006
, “
Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
Proc. Inst. Mech. Eng. C
,
220
(
7
), pp.
1045
1056
.
42.
Pellegrino
,
S.
,
1993
, “
Structural Computations With the Singular Value Decomposition of the Equilibrium Matrix
,”
Int. J. Solids. Struct.
,
30
(
21
), pp.
3025
3035
.
43.
Wohlhart
,
K.
,
1991
, “
On Isomeric Overconstrained Space Mechanisms
,”
Proceedings of 8th World Congress on Theory of Machines and Mechanisms
,
Prague, Czechoslovakia
,
Aug. 26–31
, pp.
153
158
.
44.
Chai
,
X.
,
Zhang
,
C.
, and
Dai
,
J. S.
,
2018
, “
A Single-Loop 8R Linkage With Plane-Symmetry and Bifurcation Property
,”
International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Netherlands
,
June 20–22
, pp.
1
8
.
45.
Ghafoor
,
A.
,
Dai
,
J. S.
, and
Duffy
,
J.
,
2004
, “
Stiffness Modeling of the Soft-Finger Contact in Robotic Grasping
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
646
656
.
46.
Baker
,
J. E.
,
1988
, “
The Bennett Linkage and Its Associated Quadric Surfaces
,”
Mech. Mach. Theory
,
23
(
2
), pp.
147
156
.
47.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
651
.
48.
Woo
,
L.
, and
Freudenstein
,
F.
,
1970
, “
Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems
,”
J. Mech.
,
5
(
3
), pp.
417
460
.
49.
Dai
,
J. S.
,
Holland
,
N.
, and
Kerr
,
D. R.
,
1995
, “
Finite Twist Mapping and Its Application to Planar Serial Manipulators With Revolute Joints
,”
Proc. Inst. Mech. Eng. C
,
209
(
4
), pp.
263
271
.
50.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2002
, “
Null–Space Construction Using Cofactors From a Screw–Algebra Context
,”
Proc. R. Soc. London, Ser. A
,
458
(
2024
), pp.
1845
1866
.
You do not currently have access to this content.