In this paper, a lightweight high-payload cable-driven serial-parallel manipulator is proposed. The manipulator comprises one 3-degree-of-freedom (3-DOF) shoulder joint and one single-DOF elbow joint. Using a special tension-amplifying principle, which is an ingenious two-stage deceleration method, the proposed manipulator has a higher load/mass ratio than those of conventional manipulators. In this paper, the special tension-amplifying principle is discussed in detail. The shoulder and elbow joints of the proposed manipulator are driven by cables. The design of this cable-driven mechanism and the mobility of the joints are analyzed, and the structural parameters of the joints are optimized to improve the payload capacity. The size of the manipulator is close to that of a human arm because the actuators of the cable-driven mechanism can be rear-mounted. Because the elbow joint is located at the end of the shoulder joint and the driven cables of the elbow joint are coupled with the rotation of the shoulder joint, the manipulator is designed with decoupled cable routing. The overall configuration and cable routing of the manipulator are presented, and then, kinematics, joint stiffness, strength, and workspace of the manipulator are analyzed. Finally, we report on the fabrication of a physical prototype and testing of its joint stiffness, payload capacity, workspace, speed, and repeatability to verify the feasibility of our proposed manipulator.

References

References
1.
Gutzwiller
,
R. S.
, and
Reeder
,
J.
,
2017
, “
Human Interactive Machine Learning for Trust in Teams of Autonomous Robots
,”
Proceedings of the IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)
,
Savannah, GA
,
Mar. 27–31
, pp.
1
3
.
2.
Pacaux-Lemoine
,
M. P.
,
Trentesaux
,
D.
,
Rey
,
G. Z.
, and
Millot
,
P.
,
2017
, “
Designing Intelligent Manufacturing Systems Through Human–Machine Cooperation Principles: A Human-Centered Approach
,”
Comput. Ind. Eng.
,
111
, pp.
581
595
.
3.
Galceran
,
E.
, and
Carreras
,
M.
,
2013
, “
A Survey on Coverage Path Planning for Robotics
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1258
1276
.
4.
Dolgov
,
D.
,
Thrun
,
S.
,
Montemerlo
,
M.
, and
Dieble
,
J.
,
2010
, “
Path Planning for Autonomous Vehicles in Unknown Semi-Structured Environments
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
485
501
.
5.
Nozawa
,
S.
,
Kakiuchi
,
Y.
,
Okada
,
K.
, and
Inaba
,
M.
,
2012
, “
Controlling the Planar Motion of a Heavy Object by Pushing With a Humanoid Robot Using Dual-Arm Force Control
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
1428
1435
.
6.
Ohmura
,
Y.
, and
Kuniyoshi
,
Y.
,
2007
, “
Humanoid Robot Which Can Lift a 30 kg Box by Whole Body Contact and Tactile Feedback
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
1136
1141
.
7.
Mukai
,
T.
,
Hirano
,
S.
,
Nakashima
,
H.
,
Kato
,
Y.
,
Sakaida
,
Y.
,
Guo
,
S.
, and
Hosoe
,
S.
,
2010
, “
Development of a Nursing-Care Assistant Robot RIBA That Can Lift a Human in Its Arms
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei
,
Oct. 18–22
, pp.
5996
6001
.
8.
Wang
,
H.
, and
Kasagami
,
F.
,
2008
, “
A Patient Transfer Apparatus Between Bed and Stretcher
,”
IEEE Trans. Cybern.
,
38
(
1
), pp.
60
67
.
9.
Rainer
,
B.
,
Johannes
,
K.
,
Guenter
,
S.
,
Ralf
,
K.
,
Alin
,
A. S.
,
Alexander
,
B.
,
Oliver
,
E.
,
Sami
,
H.
,
Andreas
,
S.
,
Gerhard
,
G.
, and
Gerhard
,
H.
,
2010
, “
The KUKA-DLR Lightweight Robot Arm—A New Reference Platform for Robotics Research and Manufacturing
,”
Proceedings of the 6th German Conference on Robotics
,
Munich, Germany
,
June 7–9
, pp.
1
8
. EP0326534 B1.
10.
Onishi
,
M.
,
Luo
,
Z. W.
,
Odashima
,
T.
,
Hirano
,
S.
,
Tahara
,
K.
, and
Mukai
,
T.
,
2007
, “
Generation of Human Care Behaviors by Human-Interactive Robot RI-MAN
,”
Proceedings of the IEEE International Conference on Robotics & Automation
,
Roma
,
Apr. 10–14
, pp.
3128
3129
.
11.
Rader
,
S.
,
Kaul
,
L.
,
Fischbach
,
H.
,
Vahrenkamp
,
N.
, and
Asfour
,
T.
,
2016
, “
Design of a High-Performance Humanoid Dual Arm System With Inner Shoulder Joints
,”
IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)
,
Cancun
,
Nov. 15–17
, pp.
523
529
.
12.
Mukai
,
T.
,
Hirano
,
S.
,
Yoshida
,
M.
,
Nakashima
,
H.
, and
Hayakawa
,
Y.
,
2011
, “
Whole-Body Contact Manipulation Using Tactile Information for the Nursing-Care Assistant Robot RIBA
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
2445
2451
.
13.
Mukai
,
T.
,
Hirano
,
S.
,
Yoshida
,
M.
,
Nakashima
,
H.
,
Guo
,
S.
, and
Hayakawa
,
Y.
,
2011
, “
Tactile-Based Motion Adjustment for the Nursing-Care Assistant Robot RIBA
,”
Proceedings of the IEEE International Conference on Robotics & Automation
,
Shanghai
,
May 9–13
, pp.
5435
5441
.
14.
Kim
,
Y. J.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
.
15.
Fuchs
,
M.
,
Borst
,
C.
,
Giordano
,
P. R.
,
Baumann
,
A.
,
Kraemer
,
E.
,
Langwald
,
J.
,
Gruber
,
R.
,
Seitz
,
N.
,
Plank
,
G.
,
Kunze
,
K.
,
Burger
,
R.
,
Schmidt
,
F.
,
Wimboeck
,
T.
, and
Hirzinger
,
G.
,
2009
, “
Rollin’ Justin—Design Considerations and Realization of a Mobile Platform for a Humanoid Upper Body
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Kobe
,
May 12–17
, pp.
4131
4137
.
16.
Lemburg
,
J.
,
Fernandez
,
J. D. G.
,
Eich
,
M.
,
Mronga
,
D.
, and
Kirchner
,
F.
,
2011
, “
AILA—Design of an Autonomous Mobile Dual-Arm Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Shanghai
,
May 9–13
, pp.
5147
5153
.
17.
Kajita
,
S.
,
Kaneko
,
K.
,
Kaneiro
,
F.
,
Harada
,
K.
,
Morisawa
,
M.
,
Nakaoka
,
S. I.
,
Miura
,
K.
,
Fujiwara
,
K.
,
Neo
,
E. S.
,
Hara
,
I.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2011
, “
Cybernetic Human HRP-4C: A Humanoid Robot With Human-Like Proportions
,”
Rob. Res. Springer Tracts Adv. Rob.
,
70
, pp.
301
314
.
18.
Ding
,
J.
,
Lim
,
Y. J.
,
Solano
,
M.
,
Shadle
,
K.
,
Park
,
C.
,
Lin
,
C.
, and
Hu
,
J.
,
2014
, “
Giving Patients a Lift—The Robotic Nursing Assistant (RoNA)
,”
Proceedings of the IEEE International Conference on Technologies for Practical Robot Applications
,
Woburn, MA
,
Apr. 14–15
, pp.
1
5
.
19.
Liyanage
,
M. H.
,
Krouglicof
,
N.
, and
Gosine
,
R.
,
2009
, “
Design and Control of a High Performance SCARA Type Robotic Arm With Rotary Hydraulic Actuators
,”
Proceedings of the IEEE Conference on Electrical & Computer Engineering
,
St. John’s, NL
,
May 3–6
, pp.
827
832
.
20.
Guo
,
Q.
,
Yu
,
T.
, and
Jiang
,
D.
,
2015
, “
Robust H∞ Positional Control of 2-DOF Robotic Arm Driven by Electro-Hydraulic Servo System
,”
ISA Trans.
,
59
, pp.
55
64
.
21.
Kojima
,
K.
,
Karasawa
,
T.
,
Kozuki
,
T.
, and
Kuroiwa
,
E.
,
2015
, “
Development of Life-Sized High-Power Humanoid Robot JAXON for Real-World Use
,”
Proceedings of the IEEE-RAS International Conference on Humanoid Robots
,
Seoul
,
Nov. 3–5
, pp.
838
843
.
22.
Giberti
,
H.
,
Cinquemani
,
S.
, and
Legnani
,
G.
,
2010
, “
Effects of Transmission Mechanical Characteristics on the Choice of a Motor–Reducer
,”
Mechatronics
,
20
(
5
), pp.
604
610
.
23.
Gao
,
H. B.
,
Zhuang
,
H. C.
,
Deng
,
Z. Q.
,
Ding
,
L.
, and
Liu
,
Z.
,
2012
, “
Transmission Mode Research on the Joints of a Multi-Legged Walking Robot
,” ,
151
, pp.
518
522
.
24.
Yang
,
Z. W.
, and
Lan
,
C. C.
,
2015
, “
An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs
,”
Mech. Mach. Theory
,
92
, pp.
314
329
.
25.
Kim
,
H. S.
, and
Song
,
J. B.
,
2014
, “
Multi-DOF Counterbalance Mechanism for a Service Robot Arm
,”
IEEE/ASME Trans. Mech.
,
19
(
6
), pp.
1756
1763
.
26.
Paine
,
N.
,
Oh
,
S.
, and
Sentis
,
L.
,
2014
, “
Design and Control Considerations for High-Performance Series Elastic Actuators
,”
IEEE/ASME Trans. Mech.
,
19
(
3
), pp.
1080
1091
.
27.
Lee
,
D. H.
,
Tran
,
D. T.
, and
Oh
,
Y.
,
2014
, “
An Approach Toward Human-Like Motion Control of a Dual Arm Robot for Picking Heavy Objects
,”
Proceedings of the IEEE-RAS International Conference on Humanoid Robots
,
Madrid
,
Nov. 18–20
, pp.
1069
1074
.
28.
Nozawa
,
S.
,
Ueda
,
R.
,
Kakiuchi
,
Y.
,
Okada
,
K.
, and
Inaba
,
M.
,
2010
, “
A Full-Body Motion Control Method for a Humanoid Robot Based on On-Line Estimation of the Operational Force of an Object With an Unknown Weight
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems
,
Taipei
,
Oct. 18–22
, pp.
2684
2691
.
29.
Murooka
,
M.
,
Nozawa
,
S.
,
Kakiuchi
,
Y.
,
Okada
,
K.
, and
Inaba
,
M.
,
2015
, “
Whole-Body Pushing Manipulation With Contact Posture Planning of Large\hbox{/}and Heavy Object for Humanoid Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
5682
5689
.
30.
Ito
,
Y.
,
Nozawa
,
S.
,
Urata
,
J.
,
Nakaoka
,
T.
, and
Kobayashi
,
J.
,
2014
, “
Development and Verification of Life-Size Humanoid With High-Output Actuation System
,”
Proceedings of the IEEE International Conference on Robotics & Automation
,
Hong Kong
,
May 31–June 7
, pp.
3433
3438
.
31.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2016
, “
Force Distribution With Pose-Dependent Force Boundaries for Redundantly Actuated Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041004
.
32.
Kawamura
,
S.
, and
Ito
,
K.
,
1993
, “
A New Type of Master Robot for Teleoperation Using a Radial Wire Drive System
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems, Vol. 1
,
Yokohama, Japan
,
July 26–30
, pp.
55
60
.
33.
Yang
,
Y.
,
Chen
,
W.
,
Wu
,
X.
, and
Chen
,
Q.
,
2010
, “
Stiffness Analysis of 3-DOF Spherical Joint Based on Cable-Driven Humanoid Arm
,”
Proceedings of the IEEE Conference on Industrial Electronics & Applications (ICIEA)
,
Taichung
,
June 15–17
, pp.
99
103
.
You do not currently have access to this content.