Origami has shown its potential in designing a three-dimensional folded structure from a flat sheet of material. In this paper, we present geometric design methods to construct cylindrical and axisymmetric origami structures that can fit between two given surfaces. Due to the symmetry of the structures, a strip of folds based on the generalized Miura-ori cells is first constructed and then replicated longitudinally/circumferentially to form the cylindrical/axisymmetric origami structures. In both designs, algorithms are presented to ensure that all vertexes are either on or strictly within the region between the target surfaces. The conditions of flat-foldability and developability are fulfilled at the inner vertexes and the designs are rigid-foldable with a single degree-of-freedom. The methods for cylindrical and axisymmetric designs are similar in implementation and of potential in designing origami structures for engineering purposes, such as foldcores, foldable shelters, and metamaterials.

References

References
1.
Miura
,
K.
,
1985
, “
Method of packaging and deployment of large membranes in space
”. The Institute of Space and Astronautical Science report,
618
, p.
1
.
2.
Lang
,
R. J.
,
2017
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
AK Peters/CRC Press
.
3.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
4.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-deployable Origami Stent Grafts As a Biomedical Application of Ni-rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng.: A
,
419
(
1
), pp.
131
137
.
5.
Saito
,
K.
,
Yamamoto
,
S.
,
Maruyama
,
M.
, and
Okabe
,
Y.
,
2014
, “
Asymmetric Hindwing Foldings in Rove Beetles
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
46
), pp.
16349
16352
.
6.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
.
7.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), pp.
215501
.
8.
Yasuda
,
H.
,
Chen
,
Z.
, and
Yang
,
J.
,
2016
, “
Multitransformable Leaf-out Origami with Bistable Behavior
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031013
.
9.
Chen
,
Y.
,
Lv
,
W.
,
Li
,
J.
, and
You
,
Z.
,
2017
, “
An Extended Family of Rigidly Foldable Origami Tubes
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021002
.
10.
Zhai
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2018
, “
Origami-inspired, on-demand Deployable and Collapsible Mechanical Metamaterials with Tunable Stiffness
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
9
), pp.
2032
2037
.
11.
Lang
,
R. J.
,
1996
, “
A computational algorithm for origami design
,”
Proceedings of the twelfth annual symposium on Computational geometry
,
ACM
, pp.
98
105
.
12.
Mitani
,
J.
,
2009
, “
A Design Method for 3d Origami Based on Rotational Sweep
,”
Comput.-Aid. Design Appl.
,
6
(
1
), pp.
69
79
.
13.
Tachi
,
T.
,
2010
, “
Origamizing Polyhedral Surfaces
,”
IEEE Trans. Vis. Comput. Graph.
,
16
(
2
), pp.
298
311
.
14.
Tachi
,
T.
,
2013
, “
Designing Freeform Origami Tessellations by Generalizing Resch’s Patterns
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111006
.
15.
Gattas
,
J. M.
,
Wu
,
W.
, and
You
,
Z.
,
2013
, “
Miura-base Rigid Origami: Parameterizations of First-level Derivative and Piecewise Geometries
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111011
.
16.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085001
.
17.
Dudte
,
L. H.
,
Vouga
,
E.
,
Tachi
,
T.
, and
Mahadevan
,
L.
,
2016
, “
Programming Curvature Using Origami Tessellations
,”
Nat. Mater.
,
15
(
5
), p.
583
.
18.
Lang
,
R. J.
, and
Howell
,
L.
,
2018
, “
Rigidly Foldable Quadrilateral Meshes From Angle Arrays
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021004
.
19.
Zhou
,
X.
,
Wang
,
H.
, and
You
,
Z.
,
2015
, “
Design of Three-dimensional Origami Structures Based on a Vertex Approach
,”
Proc. R. Soc. A
,
471
(
2181
), p.
20150407
.
20.
Wang
,
F.
,
Gong
,
H.
,
Chen
,
X.
, and
Chen
,
C.
,
2016
, “
Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures
,”
Sci. Rep.
,
6
, p.
33312
.
21.
Song
,
K.
,
Zhou
,
X.
,
Zang
,
S.
,
Wang
,
H.
, and
You
,
Z.
,
2017
, “
Design of Rigid-foldable Doubly Curved Origami Tessellations Based on Trapezoidal Crease Patterns
,”
Proc. R. Soc. A
,
473
(
2200
), p.
20170016
.
22.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms with Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
23.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q.
,
2018
, “
Lower-order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable Bar Structures with Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139
, pp.
1
14
.
24.
Tachi
,
T.
,
2009
, “
Generalization of rigid foldable quadrilateral mesh origami
,”
Symposium of the International Association for Shell and Spatial Structures (50th. 2009. Valencia). Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures: Proceedings, Editorial Universitat Politècnica de València
.
25.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
26.
Lang
,
R. J.
,
Nelson
,
T.
,
Magleby
,
S.
, and
Howell
,
L.
,
2017
, “
Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021013
.
You do not currently have access to this content.