Parallel robots have been primarily investigated as potential mechanisms with stiffness modulation capabilities through the use of actuation redundancy to change internal preload. This paper investigates real-time stiffness modulation through the combined use of kinematic redundancy and variable stiffness actuators. A known notion of directional stiffness is used to guide the real-time geometric reconfiguration of a parallel robot and command changes in joint-level stiffness. A weighted gradient-projection redundancy resolution approach is demonstrated for resolving kinematic redundancy while satisfying the desired directional stiffness and avoiding singularity and collision between the legs of a Gough/Stewart parallel robot with movable anchor points at its base and with variable stiffness actuators. A simulation study is carried out to delineate the effects of using kinematic redundancy with or without the use of variable stiffness actuators. In addition, modulation of the entire stiffness matrix is demonstrated as an extension of the approach for modulating directional stiffness.

References

1.
Luces
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2017
, “
A Review of Redundant Parallel Kinematic Mechanisms
,”
J. Intell. Robot. Syst.
,
86
(
2
), pp.
175
198
.
2.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
3.
Kim
,
S.
,
1997
, “
Operational Quality Analysis of Parallel Manipulators With Actuation Redundancy
,”
Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Vol. 3
,
Albuquerque, NM
,
Apr. 20
, pp.
2651
2656
, IEEE.
4.
Radojicic
,
J.
,
Surdilovic
,
D.
, and
Schreck
,
G.
,
2009
, “
Modular Hybrid Robots for Safe Human–Robot Interaction
,”
Int. J. Mech.. Mechatron. Eng.
,
3
(
12
), pp.
1601
1607
.
5.
Salisbury
,
J. K.
,
1980
, “
Active Stiffness Control of a Manipulator in Cartesian Coordinates
,”
19th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes
,
Albuquerque, NM
,
Dec. 10
, pp.
95
100
.
6.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation, Parts I, II, III
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
1
24
.
7.
Yi
,
B.-J.
, and
Freeman
,
R. A.
,
1993
, “
Geometric Analysis of Antagonistic Stiffness in Redundantly Actuated Parallel Mechanisms
,”
J. Robot. Syst.
,
10
(
5
), pp.
581
603
.
8.
Chen
,
S.-F.
, and
Kao
,
I.
,
2000
, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Int. J. Robot. Res.
,
19
(
9
), pp.
835
847
.
9.
Simaan
,
N.
, and
Shoham
,
M.
,
2003
, “
Geometric Interpretation of the Derivatives of Parallel Robots Jacobian Matrix With Application to Stiffness Control
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
33
42
.
10.
Simaan
,
N.
, and
Shoham
,
M.
,
2003
, “
Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom Double Planar Parallel Robot
,”
Int. J. Robot. Res.
,
22
(
9
), pp.
757
775
.
11.
Abdolshah
,
S.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2017
, “
Optimizing Stiffness and Dexterity of Planar Adaptive Cable-Driven Parallel Robots
,”
ASME J. Mech. Robot.
,
9
(
3
), p.
031004
.
12.
Anson
,
M.
,
Alamdari
,
A.
, and
Krovi
,
V.
,
2017
, “
Orientation Workspace and Stiffness Optimization of Cable-Driven Parallel Manipulators With Base Mobility
,”
ASME J. Mech. Robot.
,
9
(
3
), p.
031011
.
13.
Kim
,
W.-K.
,
Lee
,
J.-Y.
, and
Yi
,
B. J.
,
1997
, “
Analysis for a Planar 3 Degree-of-Freedom Parallel Mechanism With Actively Adjustable Stiffness Characteristics
,”
KSME Int. J.
,
11
(
4
), p.
408
.
14.
Zhou
,
X.
,
Jun
,
S.-K.
, and
Krovi
,
V.
,
2016
, “Planar Cable Robot With Variable Stiffness,”
Experimental Robotics
(No. 109 in Springer Tracts in Advanced Robotics),
M. A.
Hsieh
,
O.
Khatib
, and
V.
Kumar
, eds.,
Springer International Publishing
,
New York
, pp.
391
403
.
15.
Loncaric
,
J.
,
1987
, “
Normal Forms of Stiffness and Compliance Matrices
,”
IEEE J. Robot. Autom.
,
3
(
6
), pp.
567
572
.
16.
Huang
,
S.
, and
Schimmels
,
J. M.
,
1998
, “
The Bounds and Realization of Spatial Stiffnesses Achieved With Simple Springs Connected in Parallel
,”
IEEE Trans. Robot. Autom.
,
14
(
3
), pp.
466
475
.
17.
Jamshidifar
,
H.
,
Khajepour
,
A.
,
Fidan
,
B.
, and
Rushton
,
M.
,
2017
, “
Kinematically-Constrained Redundant Cable-Driven Parallel Robots: Modeling, Redundancy Analysis, and Stiffness Optimization
,”
IEEE/ASME Trans. Mech.
,
22
(
2
), pp.
921
930
.
18.
Kock
,
S.
, and
Schumacher
,
W.
,
1998
, “
A Parallel X–Y Manipulator With Actuation Redundancy for High-Speed and Active-Stiffness Applications
,”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Vol. 3
,
Leuven, Belgium
,
May 16
, pp.
2295
2300
, IEEE.
19.
Chakarov
,
D.
,
2004
, “
Study of the Antagonistic Stiffness of Parallel Manipulators With Actuation Redundancy
,”
Mech. Mach. Theory
,
39
(
6
), pp.
583
601
.
20.
Muller
,
A.
,
2006
, “
Stiffness Control of Redundantly Actuated Parallel Manipulators
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006 (ICRA 2006)
,
Orlando, FL
,
May 15
, pp.
1153
1158
, IEEE.
21.
Yu
,
K.
,
Lee
,
L. F.
,
Tang
,
C. P.
, and
Krovi
,
V. N.
,
2010
, “
Enhanced Trajectory Tracking Control With Active Lower Bounded Stiffness Control for Cable Robot
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3
, pp.
669
674
.
22.
Pitt
,
E. B.
,
Simaan
,
N.
, and
Barth
,
E. J.
,
2015
, “
An Investigation of Stiffness Modulation Limits in a Pneumatically Actuated Parallel Robot With Actuation Redundancy
,”
ASME/BATH 2015 Symposium on Fluid Power and Motion Control
,
Chicago, IL
,
Oct. 12
, American Society of Mechanical Engineers, p.
V001T01A063
.
23.
Yi
,
B.-J.
, and
Freeman
,
R. A.
,
1992
, “
Synthesis of Actively Adjustable Springs by Antagonistic Redundant Actuation
,”
J. Dyn. Syst. Meas. Control
,
114
(
3
), pp.
454
461
.
24.
Müller
,
A.
,
2010
, “
Consequences of Geometric Imperfections for the Control of Redundantly Actuated Parallel Manipulators
,”
IEEE Trans. Robot.
,
26
(
1
), pp.
21
31
.
25.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Visser
,
L. C.
, and
Wolf
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Robot. Autonom. Syst.
,
61
(
12
), pp.
1601
1614
.
26.
Van Ham
,
R.
,
Vanderborght
,
B.
,
Van Damme
,
M.
,
Verrelst
,
B.
, and
Lefeber
,
D.
,
2007
, “
MACCEPA, the Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator: Design and Implementation in a Biped Robot
,”
Robot. Autonom. Syst.
,
55
(
10
), pp.
761
768
.
27.
Jafari
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2011
, “
Awas-II: A New Actuator With Adjustable Stiffness Based on the Novel Principle of Adaptable Pivot Point and Variable Lever Ratio
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9
, pp.
4638
4643
, IEEE.
28.
Hollander
,
K. W.
,
Sugar
,
T. G.
, and
Herring
,
D. E.
,
2005
, “
Adjustable Robotic Tendon Using a ‘Jack Spring’
,”
9th International Conference on Rehabilitation Robotics
,
Chicago, IL
,
June 28
, pp.
113
118
, IEEE.
29.
Lee
,
J.
,
Ajoudani
,
A.
,
Hoffman
,
E. M.
,
Rocchi
,
A.
,
Settimi
,
A.
,
Ferrati
,
M.
,
Bicchi
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2014
, “
Upper-Body Impedance Control With Variable Stiffness for a Door Opening Task
,”
2014 IEEE-RAS International Conference on Humanoid Robots
,
Madrid, Spain
,
Nov. 18
, pp.
713
719
.
30.
Lim
,
W. B.
,
Yeo
,
S. H.
,
Yang
,
G.
, and
Chen
,
I. M.
,
2013
, “
Design and Analysis of a Cable-Driven Manipulator With Variable Stiffness
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6
, pp.
4519
4524
.
31.
Zhou
,
X.
,
Jun
,
S.-K.
, and
Krovi
,
V.
,
2015
, “
A Cable Based Active Variable Stiffness Module With Decoupled Tension
,”
ASME J. Mech. Robot.
,
7
(
1
), p.
011005
.
32.
Rice
,
J. J.
, and
Schimmels
,
J. M.
,
2018
, “
Passive Compliance Control of Redundant Serial Manipulators
,”
ASME J. Mech. Robot.
,
10
(
4
), p.
041009
.
33.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2018
, “
Stiffness Modulation in an Elastic Articulated-cable Leg-Orthosis Emulator: Theory and Experiment
,”
IEEE Trans. Robot.,
34
(
5
), pp.
1266
1279
.
34.
Alizade
,
R. I.
,
Tagiyev
,
N. R.
, and
Duffy
,
J.
,
1994
, “
A Forward and Reverse Displacement Analysis of a 6-DOF In-Parallel Manipulator
,”
Mech. Mach. Theory
,
29
(
1
), pp.
115
124
.
35.
Tsai
,
L.-W.
, and
Tahmasebi
,
F.
,
1993
, “
Synthesis and Analysis of a New Class of Six-Degree-of-Freedom Parallel Minimanipulators
,”
J. Robot. Syst.
,
10
(
5
), pp.
561
580
.
36.
Behi
,
F.
,
1988
, “
Kinematic Analysis for a Six-Degree-of-Freedom 3-PRPS Parallel Mechanism
,”
IEEE J. Robot. Autom.
,
4
(
5
), pp.
561
565
.
37.
Ben-Horin
,
R.
,
Shoham
,
M.
, and
Djerassi
,
S.
,
1998
, “
Kinematics, Dynamics and Construction of a Planarly Actuated Parallel Robot
,”
Robot. Comput. Integr. Manuf.
,
14
(
2
), pp.
163
172
.
38.
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Geometric Algorithms for the Computation of the Constant-Orientation Workspace and Singularity Surfaces of a Special 6-RUS Parallel Manipulator
,”
27th Biennial Mechanisms and Robotics Conference
,
Montreal, Quebec
,
Sept. 29–Oct. 2
, pp.
505
514
.
39.
Wu
,
G.
,
2012
, “
Multiobjective Optimum Design of a 3-RRR Spherical Parallel Manipulator With Kinematic and Dynamic Dexterities
,”
J. Model. Identif. Control: Norwegian Res. Bull.
,
33
(
3
), pp.
111
121
.
40.
Neill
,
D. R.
,
Sneed
,
R.
,
Dawson
,
J.
,
Sebag
,
J.
, and
Gressler
,
W.
,
2014
, “Baseline Design of the Lsst Hexapods and Rotator,”
Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation
, Vol.
9151
,
R.
Navarro
,
C. R.
Cunningham
, and
A. A.
Barto
, eds.,
International Society for Optics and Photonics
,
Bellingham, WA
, p.
91512B
.
41.
Sawyer
,
B. A.
,
1968
, “
Magnetic Positioning Device
,” U.S. Patent No. 3,376,578.
42.
Mohamed
,
M.
, and
Duffy
,
J.
,
1985
, “
A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators
,”
J. Mech. Trans. Autom. Des.
,
107
(
2
), pp.
226
229
.
43.
Sima’an
,
N.
,
Glozman
,
D.
, and
Shoham
,
M.
,
1998
, “
Design Considerations of New Six Degrees-of-Freedom Parallel Robots
,”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1327
1333
, Cat. No. 98CH36146.
44.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons
,
New York
.
45.
Yi
,
B. J.
,
Freeman
,
R. A.
, and
Tesar
,
D.
,
1989
, “
Open-Loop Stiffness Control of Overconstrained Mechanisms/Robotic Linkage Systems
,”
Proceedings of the 1989 International Conference on Robotics and Automation, Vol. 3
,
Scottsdale, AZ
,
May 14
, pp.
1340
1345
.
46.
Li
,
Y.
, and
Kao
,
I.
,
2004
, “
Stiffness Control on Redundant Manipulators: A Unique and Kinematically Consistent Solution
,”
Proceedings of the IEEE International Conference on Robotics and Automation, 2004 (ICRA’04)
,
New Orleans, LA
,
Apr. 26
, IEEE, pp.
3956
3961
.
47.
Huang
,
S.
, and
Schimmels
,
J. M.
,
1998
, “
The Bounds and Realization of Spatial Stiffnesses Achieved With Simple Springs Connected in Parallel
,”
IEEE Trans. Robot. Autom.
,
14
(
3
), pp.
466
475
.
48.
Liegeois
,
A.
,
1977
, “
Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms
,”
IEEE Trans. Syst. Man Cybern.
,
7
(
12
), pp.
868
871
.
49.
Walker
,
I. D.
, and
Marcus
,
S. I.
,
1988
, “
Subtask Performance by Redundancy Resolution for Redundant Robot Manipulators
,”
IEEE J. Robot. Autom.
,
4
(
3
), pp.
350
354
.
50.
Li
,
L.
,
Gruver
,
W. A.
,
Zhang
,
Q.
, and
Yang
,
Z.
,
2001
, “
Kinematic Control of Redundant Robots and the Motion Optimizability Measure
,”
IEEE Trans. Syst. Man Cybern. Part B (Cybern)
,
31
(
1
), pp.
155
160
.
51.
Liu
,
Y.
,
Zhao
,
J.
, and
Xie
,
B.
,
2010
, “
Obstacle Avoidance for Redundant Manipulators Based on a Novel Gradient Projection Method With a Functional Scalar
,”
2010 IEEE International Conference on Robotics and Biomimetics
,
Tianjin, China
,
Dec. 14
, pp.
1704
1709
.
52.
Euler
,
J. A.
,
Dubey
,
R. V.
, and
Babcock
,
S. M.
,
1989
, “
Self Motion Determination Based on Actuator Velocity Bounds for Redundant Manipulators
,”
J. Robot. Syst.
,
6
(
4
), pp.
417
425
.
53.
Khan
,
W. A.
, and
Angeles
,
J.
,
2006
, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
168
178
.
54.
Zghal
,
H.
,
Dubey
,
R. V.
, and
Euler
,
J. A.
,
1990
, “
Efficient Gradient Projection Optimization for Manipulators With Multiple Degrees of Redundancy
,”
Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Vol. 2
,
Cincinnati, OH
,
May 13
, pp.
1006
1011
.
55.
Agarwal
,
S.
,
Srivatsan
,
R. A.
, and
Bandyopadhyay
,
S.
,
2016
, “
Analytical Determination of the Proximity of Two Right-Circular Cylinders in Space
,”
ASME J. Mech. Robot.
,
8
(
4
), p.
041010
.
56.
Ketchel
,
J. S.
, and
Larochelle
,
P. M.
,
2008
, “
Self-Collision Detection in Spatial Closed Chains
,”
ASME J. Mech. Des.
,
130
(
9
), p.
092305
.
57.
Merlet
,
J. P.
, and
Daney
,
D.
,
2006
, “
Legs Interference Checking of Parallel Robots Over a Given Workspace or Trajectory
,”
Proceedings of the IEEE International Conference on Robotics and Automation, 2006 (ICRA 2006)
,
Orlando, FL
,
May 15
, pp.
757
762
.
58.
Perreault
,
S.
,
Cardou
,
P.
,
Gosselin
,
C. M.
, and
Otis
,
M. J.-D.
,
2010
, “
Geometric Determination of the Interference-Free Constant-Orientation Workspace of Parallel Cable-Driven Mechanisms
,”
ASME J. Mech. Robot.
,
2
(
3
), p.
031016
.
59.
Grioli
,
G.
,
Wolf
,
S.
,
Garabini
,
M.
,
Catalano
,
M.
,
Burdet
,
E.
,
Caldwell
,
D.
,
Carloni
,
R.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Laffranchi
,
M.
, and
Lefeber
,
D.
,
2015
, “
Variable Stiffness Actuators: The User’s Point of View
,”
Int. J. Robot. Res.
,
34
(
6
), pp.
727
743
.
60.
Hurst
,
J. W.
,
Chestnutt
,
J. E.
, and
Rizzi
,
A. A.
,
2010
, “
The Actuator With Mechanically Adjustable Series Compliance
,”
IEEE Trans. Robot.
,
26
(
4
), pp.
597
606
.
You do not currently have access to this content.