The variable-stiffness joint (VSJ) plays an important role in creating compliant and powerful motions. This paper presents a novel wire-driven VSJ based on a permanent magnetic mechanism (PMM). The proposed joint regulates the joint stiffness with lower energy consumption through a wide range via the permanent magnetic mechanism. This effect possibly depends on the novel nonlinear combination of a permanent magnet-spring and wire-driven system that achieves the same stiffness with lower wire tension. A trapezoidal layout of the joint is proposed. Because of the relationship among the stiffness, the position of the joint and the stiffness of the PMM, the stiffness model is also been established. Based on this model, the decoupling controller is built to independently control the position and stiffness of the joint. Experiments show that the VSJPMM achieves position and stiffness independently and also reduces energy and power required to regulate the stiffness compared with the traditional approach. In addition, the proposed mechanism displays a powerful motion and short stiffness adjustment time.

References

References
1.
Albu-Schäffer
,
A.
,
Ott
,
C.
, and
Hirzinger
,
G.
,
2007
, “
A Unified Passivity-Based Control Framework for Position, Torque, Impedance Control of Flexible Joint Robots
,”
Int. J. Robot. Res.
,
26
(
1
), pp.
23
39
.
2.
Liu
,
L.
,
Leonhardt
,
S.
, and
Misgeld
,
B. J. E.
,
2016
, “
Design and Control of a Mechanical Rotary Variable Impedance Actuator
,”
Mechatronics
,
39
, pp.
226
236
.
3.
Kim
,
B.
, and
Song
,
J.
,
2012
, “
Design and Control of a Variable Stiffness Actuator Based on Adjustable Moment Arm
,”
IEEE Trans. Rob.
,
28
(
5
), pp.
1145
1151
.
4.
Sui
,
C.
, and
Zhao
,
M.
,
2006
, “
Statics and Stiffness Study on a 3-DOF Parallel Wire Driven Flexible Manipulator
,”
J. Mech. Eng.
,
42
(
6
), pp.
205
210
.
5.
Hogan
,
N.
, and
Buerger
,
S.
,
2005
, “Impedance and Interaction Control,”
Robotics and Automation Handbook
,
T.
Kurfess
, ed.,
CNC Press
,
New York
, pp.
1901
1924
.
6.
Tao
,
Y.
,
Wang
,
T.
, and
Wang
,
Y.
,
2015
, “
A New Variable Stiffness Robot Joint
,”
Ind. Robot
,
42
(
4
), pp.
371
378
.
7.
Park
,
J.
, and
Song
,
J.
,
2010
, “
A Nonlinear Stiffness Safe Joint Mechanism Design for Human Robot Interaction
,”
ASME J. Mech. Rob.
,
132
(
6
), p.
061005
.
8.
Alazmani
,
A.
,
Keeling
,
D. G.
,
Walker
,
P. G.
,
Abbas
,
S. K.
,
Jaber
,
O.
,
Sivananthan
,
M.
,
Watterson
,
K.
, and
Levesley
,
M. C.
,
2013
, “
Design and Evaluation of a Buckled Strip Compliant Actuator
,”
IEEE/ASME Trans. Mechatronics
,
18
(
6
), pp.
1819
1826
.
9.
Yalcin
,
M.
,
Uzunoglu
,
B.
,
Altintepe
,
E.
, and
Patoglu
,
V.
,
2013
, “
VnSA: Variable Negative Stiffness Actuation Based on Nonlinear Deflection Characteristics of Buckling Beams
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Nov. 3–7
, pp.
5418
5424
.
10.
Migliore
,
S. A.
,
Brown
,
E. A.
, and
DeWeerth
,
S. P.
,
2007
, “
Novel Nonlinear Elastic Actuators for Passively Controlling Robotic Joint Compliance
,”
ASME J. Mech. Rob.
,
129
(
4
), pp.
406
412
.
11.
Jafari
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2013
, “
A Novel Intrinsically Energy Efficient Actuator with Adjustable Stiffness (AWAS)
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
355
365
.
12.
Tsagarakis
,
N. G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2011
, “
A New Variable Stiffness Actuator (CompAct-VSA): Design and Modelling
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
174
179
.
13.
Wang
,
W.
,
Fu
,
X.
,
Li
,
Y.
, and
Yun
,
C.
,
2016
, “
Design of Variable Stiffness Based on Modified Gear-Rack Mechanism
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061008
.
14.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Pasadena, CA
,
May 19–23
, pp.
1741
1746
.
15.
Park
,
J.
, and
Song
,
J. B.
,
2010
, “
Safe Joint Mechanism Using Inclined Link With Springs for Collision Safety and Positioning Accuracy of a Robot Arm
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Anchorage, AK
,
May 3–7
, pp.
813
818
.
16.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2004
, “
Optimal Mechanical/Control Design for Safe and Fast Robotics
,”
Experimental Robotics IV: The 9th International Symposium on Experimental Robotics
,
Singapore
,
June 18–21
, pp.
311
320
.
17.
Koganezawa
,
K.
,
Nakazawa
,
T.
, and
Inaba
,
T.
,
2006
, “
Antagonistic Control of Multi-DoF Joint by Using the Actuator with the Actuator with Non-Linear Elasticity
,”
IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–17
, pp.
2201
2207
.
18.
Koganezawa
,
K.
,
Inaba
,
T.
, and
Nakazawa
,
T.
,
2006
, “
Stiffness and Angle Control of Antagonistially Driven Joint
,”
First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Pisa, Italy
,
Feb. 20–22
, pp.
1007
1013
.
19.
Nakanishi
,
Y.
,
Ito
,
N.
,
Shirai
,
T.
,
Osada
,
M.
,
Ohta
,
S.
,
Urata
,
J.
,
Okada
,
K.
, and
Inaba
,
M.
,
2011
, “
Design of Powerful and Flexible Musculoskeletal Arm by Using Nonlinear Spring Unit and Electromagnetic Clutch Opening Mechanism
,”
IEEE/RAS International Conference on Humanoid Robots
,
Piscataway, NJ
,
Oct. 26–28
, pp.
377
382
.
20.
Osada
,
M.
,
Ito
,
N.
,
Nakanishi
,
Y.
, and
Inaba
,
M.
,
2010
, “
Realization of Flexible Motion by Musculoskeletal Humanoid “Kojiro” With Add-on Nonlinear Spring Units
,”
IEEE/RAS International Conference on Humanoid Robots
,
Piscataway, NJ
,
Dec. 6–8
, pp.
378
383
.
21.
Migliore
,
S. A.
,
Brown
,
E. A.
, and
DeWeerth
,
S. P.
,
2005
, “
Biologically Inspired Joint Stiffness Control
,” IEEE International Conference on Robotics and Automation
(ICRA)
,
Barcelona, Spain
,
Apr. 18–22
, pp.
4508
4513
.
22.
Catalano
,
M. G.
,
Grioli
,
G.
,
Garabini
,
M.
,
Bonomo
,
F.
,
Mancini
,
M.
,
Tsagarakis
,
N.
, and
Bicchi
,
A.
,
2011
, “
VSA-CubeBot. A Modular Variable Stiffness Platform for Multi Degrees of Freedom Systems
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
5090
5095
.
23.
Osada
,
M.
,
Ito
,
N.
,
Nakanishi
,
Y.
, and
Inaba
,
M.
,
2010
, “
Stiffness Readout in Musculo-Skeletal Humanoid Robot by Using Rotary Potentiometer
,”
IEEE Sensors Conference
,
Piscataway
,
Nov. 1–4
, pp.
2329
2333
.
24.
Nam
,
K. H.
,
Kim
,
B. S.
, and
Song
,
J. B.
,
2010
, “
Compliant Actuation of Parallel-Type Variable Stiffness Actuator Based on Antagonistic Actuation
,”
J. Mech. Sci. Technol.
,
24
(
11
), pp.
2315
2321
.
25.
Chou
,
C. P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic ArtificialMuscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.
26.
Laffranchi
,
M.
,
Tsagarakis
,
N.
, and
Caldwell
,
D. G.
,
2011
, “
A Compact Compliant Actuator (CompAct TM) With Variable Physical Damping
,” IEEE International Conference on Robotics and Automation
(ICRA)
,
Shanghai, China
,
May 9–13
, pp.
4644
4650.
27.
Shafer
,
A. S.
, and
Kermani
,
M. R.
,
2011
, “
On the Feasibility and Suitability of MR Fluid Clutches in Human-Friendly Manipulators
,”
IEEE/ASME Trans. Mechatronics
,
16
(
6
), pp.
1073
1082
.
28.
Zhou
,
X.
,
Jun
,
S.
, and
Krovi
,
V.
,
2015
, “
A Cable Based Active Variable Stiffness Module With Decoupled Tension
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011005
.
29.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
526
531
.
30.
Ebrahimi
,
B.
,
Khamesee
,
M. B.
, and
Golnaraghi
,
M. F.
,
2008
, “
Design and Modeling of a Magnetic Shock Absorber Based on Eddy Current Damping Effect
,”
J. Sound Vib.,
315
(
4–5
), pp.
875
889
.
31.
Sodano
,
H. A.
,
Bae
,
J. S.
,
Inman
,
D. J.
, and
Belvin
,
W. K.
,
2005
, “
Concept and Model of Eddy Current Damper for Vibration Suppression of a Beam
,”
J. Sound Vib.,
288
(
4–5
), pp.
1177
1196
.
You do not currently have access to this content.