The narrow and redundant body of the snake robot makes it suitable for the inspection of complex bar structures, such as truss or tree structures. One of the key issues affecting the efficient motion of snake robots in complex bar structures is the development of mechanical models of snake robots on cylinders. In other words, the relationship between the payload and structural and performance parameters of the snake robot is still difficult to clarify. In this paper, the problem is approached with the Newton–Euler equations and the convex optimal method. Firstly, from the kinematic point of view, the optimal attitude of the snake robot wrapped around the cylinder is found. Next, the snake robot is modeled on the cylinder and transformed into a convex optimization problem. Then, the relationship between the payload of the snake robot on the cylinder and the geometric and attitude parameters of the body of snake robots is analyzed. Finally, the discussion for the optimal winding attitude and some advices for the design of the snake robot are proposed. This study is helpful toward the optimal design of snake robots, including geometry parameters and motor determination.

References

References
1.
Poi
,
G.
,
Scarabeo
,
C.
, and
Allotta
,
B.
,
1998
, “
Traveling Wave Locomotion Hyper-Redundant Mobile Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Lueven, Belgium
,
May 20–20
,
IEEE, Silver Spring
,
MD
, pp.
418
423
.
2.
Liljebäck
,
P.
,
Stavdahl
,
Ø.
, and
Pettersen
,
K. Y.
,
2005
, “
Modular-Pneumatic Snake Robot: 3D Modelling, Implementation and Control
,”
Proceedings of 16th IFAC World Congress
,
Prague, Czech Republic
,
July 3–8
, pp.
19
24
.
3.
Tang
,
C.
,
Ma
,
S.
,
Li
,
B.
, and
Wang
,
Y.
,
2011
, “
A Self-Tuning Multi-Phase CPG Enabling the Snake Robot to Adapt to Environments
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
San Francisco, CA
,
Sep
.
25
30
,
IEEE, Silver Spring
,
MD
, pp.
1869
1874
.
4.
Burdick
,
J. W.
,
Radford
,
J.
, and
Chirikjian
,
G. S.
,
1994
, “
A ‘Sidewinding’ Locomotion Gait for Hyper-redundant Robots
,”
Adv. Robot.
,
9
(
3
), pp.
195
216
.
5.
Tesch
,
M.
,
Lipkin
,
K.
,
Brown
,
I.
,
Hatton
,
R.
,
Peck
,
A.
,
Rembisz
,
J.
, and
Choset
,
H.
,
2009
, “
Parameterized and Scripted Gaits for Modular Snake Robots
,”
Adv. Robot.
,
23
(
9
), pp.
1131
1158
.
6.
Hopkins
,
J. K.
, and
Gupta
,
S. K.
,
2014
, “
Design and Modeling of a New Drive System and Exaggerated Rectilinear-Gait for a Snake-Inspired Robot
,”
J. Mech. Robot
,
6
(
2
), p.
021001
.
7.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1995
, “
The Kinematics of Hyperredundant Robot Locomotion
,”
IEEE Trans. Robot. Autom.
,
11
(
6
), pp.
781
793
.
8.
Yamada
,
H.
, and
Hirose
,
S.
,
2006
, “
Study on the 3d Shape of Active Cord Mechanism
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
,
IEEE, Silver Spring
,
MD
, pp.
2890
2895
.
9.
Andersson
,
S. B.
,
2008
, “
Discretization of a Continuous Curve
,”
IEEE Trans. Robot.
,
24
(
2
), pp.
456
461
.
10.
Xie
,
R.
,
Su
,
M.
,
Zhang
,
Y.
,
Li
,
M.
,
Zhu
,
H.
, and
Guan
,
Y.
,
2018
, “
PISRob: A Pneumatic Soft Robot for Locomoting Like an Inchworm
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD
,
May 21–25
,
IEEE, Silver Spring
,
MD
, pp.
3448
3453
.
11.
Ma
,
S.
,
2001
, “
Analysis of Creeping Locomotion of a Snake-Like Robot
,”
Adv. Robot.
,
15
(
2
), pp.
205
224
.
12.
Saito
,
M.
,
Fukaya
,
M.
, and
Iwasaki
,
T.
,
2002
, “
Modeling, Analysis, and Synthesis of Serpentine Locomotion with a Multilink Robotic Snake
,”
IEEE Control Syst. Mag.
,
22
(
1
), pp.
64
81
.
13.
Ostrowski
,
J.
, and
Burdick
,
J.
,
1998
, “
The Geometric Mechanics of Undulatory Robotic Locomotion
,”
Int. J. Robot. Res.
,
17
(
7
), pp.
683
701
.
14.
Shammas
,
E. A.
,
Choset
,
H.
, and
Rizzi
,
A. A.
,
2007
, “
Geometric Motion Planning Analysis for Two Classes of Underactuated Mechanical Systems
,”
Int. J. Robot. Res.
,
26
(
10
), pp.
1043
1072
.
15.
Guo
,
X.
,
Ma
,
S.
,
Li
,
B.
,
Wang
,
M.
, and
Wang
,
Y
,
2015
, “
Modelling and Optimal Torque Control of a Snake-Like Robot Based on the Fibre Bundle Theory
,”
Sci. China. Inform. Sci.
,
58
(
3
), pp.
22
38
.
16.
Guo
,
X.
,
Ma
,
S.
,
Li
,
B.
, and
Fang
,
Y.
,
2018
, “
A Novel Serpentine Gait Generation Method for Snakelike Robots Based on Geometry Mechanics
,”
IEEE/ASME Trans. Mechatron.
,
23
(
3
), pp.
1249
1258
.
17.
Guo
,
X.
,
Zhu
,
W.
, and
Fang
,
Y.
,
2018
, “
Guided Motion Planning for Snake-Like Robots Based on Geometry Mechanics and HJB Equation
,”
IEEE Trans. Ind. Electron.
,
66
(
9
), pp.
7120
7130
.
18.
Transeth
,
A. A.
,
Leine
,
R. I.
,
Glocker
,
C.
,
Pettersen
,
K. Y.
, and
Liljebäck
,
P.
,
2008
, “
Snake Robot Obstacle-Aided Locomotion: Modelling, Simulations, and Experiments
,”
IEEE Trans. Robot.
,
24
(
1
), pp.
88
104
.
19.
Liljebäck
,
P.
,
Pettersen
,
K. Y.
,
Stavdahl
,
Ø.
, and
Gravdahl
,
J. T.
,
2010
, “
A Simplified Model of Planar Snake Robot Locomotion
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Taipei, Taiwan
,
Oct. 18–22
,
IEEE, Silver Spring
,
MD
, pp.
2868
2875
.
20.
Vossoughi
,
G.
,
Pendar
,
H.
,
Heidari
,
Z.
, and
Mohammadi
,
S.
,
2008
, “
Assisted Passive Snake-Like Robots: Conception and Dynamic Modelling Using Gibbs–Appell Method
,”
Robotica
,
26
(
3
), pp.
267
276
.
21.
Hatton
,
R. L.
, and
Choset
,
H.
,
2010
, “
Generating Gaits for Snake Robots: Annealed Chain Fitting and Keyframe Wave Extraction
,”
Auton. Robot.
,
28
(
3
), pp.
271
281
.
22.
Kamegawa
,
T.
,
Harada
,
T.
, and
Gofuku
,
A.
,
2009
, “
Realization of Cylinder Climbing Locomotion with Helical Form by a Snake Robot with Passive Wheels
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Kobe, Japan
,
May 12–17
,
IEEE, Silver Spring
,
MD
, pp.
3067
3072
.
23.
Melo
,
K.
, and
Paez
,
L.
,
2012
, “
Modular Snake Robot Gaits on Horizontal Pipes
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vilamoura, Portugal
,
Oct. 7–12
,
IEEE, Silver Spring
,
MD
, pp.
3099
3104
.
24.
Shvalb
,
N.
,
Moshe
,
B. B.
, and
Medina
,
O.
,
2013
, “
A Real-Time Motion Planning Algorithm for a Hyper-Redundant Set of Mechanisms
,”
Robotica
,
31
(
8
), pp.
1327
1335
.
25.
Hirose
,
S.
,
1993
,
Biologically Inspired Robots: Snake-Like Locomotors and Manipulators
,
Oxford University Press
,
Oxford
.
This content is only available via PDF.
You do not currently have access to this content.