This paper studies a novel fluid actuated system for a spherical mobile robot. The robot’s mechanism consists of two essential parts: circular pipes to lead spherical moving masses (cores) and an internal driving unit to propel the cores. The spherical shell of the robot is rolled by displacing the cores in the pipes filled with fluid. First, we describe the structure of the robot and derive its nonlinear dynamics using the D’Alembert principle. Next, we model the internal driving unit that actuates the core inside the pipe. The simulated driving unit is studied with respect to three important parameters—the input motor torque, the actuator size, and the fluid properties. The overall model of the robot is then used for analyzing motion patterns in the forward direction. Analytical studies show that the modeled robot can be implemented under the given design specifications.

References

References
1.
Chase
,
R.
, and
Pandya
,
A.
,
2012
, “
A Review of Active Mechanical Driving Principles of Spherical Robots
,”
Robotics
,
1
(
1
), pp.
3
23
.
2.
Armour
,
R. H.
, and
Vincent
,
J. F.
,
2006
, “
Rolling in Nature and Robotics: A Review
,”
J. Bionic Eng.
,
3
(
4
), pp.
195
208
.
3.
Halme
,
A.
,
Schonberg
,
T.
, and
Wang
,
Y.
,
1996
, “
Motion Control of a Spherical Mobile Robot
,”
Proceedings of the 4th International Workshop on Advanced Motion Control (AMC 1996)
,
Mie, Japan
,
Mar. 18–21
, pp.
259
264
.
4.
Bicchi
,
A.
,
Balluchi
,
A.
,
Prattichizzo
,
D.
, and
Gorelli
,
A.
,
1997
, “
Introducing the “SPHERICLE”: An Experimental Testbed for Research and Teaching in Nonholonomy
,”
Proceedings of the IEEE Conference on Robotics and Automation
,
Albuquerque, NM
,
Apr. 23–25
, pp.
2620
2625
.
5.
Karavaev
,
Y. L.
, and
Kilin
,
A. A.
,
2015
, “
The Dynamics and Control of a Spherical Robot With an Internal Omniwheel Platform
,”
Regul. Chaotic Dyn.
,
20
(
2
), pp.
134
152
.
6.
Wei-Hsi
,
C.
,
Ching-Pei
,
C.
,
Wei-Shun
,
Y.
,
Chang-Hao
,
L.
, and
Pei-Chun
,
L.
,
2012
, “
Design and Implementation of an Omnidirectional Spherical Robot Omnicron
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Kachsiung, Taiwan
,
July 11–14
.
7.
Chowdhury
,
A. R.
,
Soh
,
G. S.
,
Foong
,
S.
, and
Wood
,
K. L.
,
2018
, “
Implementation of Caterpillar Inspired Rolling Gait and Nonlinear Control Strategy in a Spherical Robot
,”
J. Bionic Eng.
,
15
(
2
), pp.
313
328
.
8.
Akella
,
P.
,
O’Reilly
,
O.
, and
Sreenath
,
K.
,
2019
, “
Controlling the Locomotion of Spherical Robots or Why BB-8 Works
,”
ASME J. Mech. Robot.
,
11
(
2
), p.
024501
.
9.
Javadi
,
A. A. H.
, and
Mojabi
,
P.
,
2004
, “
Introducing Glory: A Novel Strategy for an Omnidirectional Spherical Rolling Robot
,”
ASME J. Dyn. Syst. Meas, Control
,
126
(
3
), pp.
678
683
.
10.
Behar
,
A.
,
Matthews
,
J.
,
Carsey
,
F.
, and
Jones
,
J.
,
2004
, “
NASA/JPL Tumbleweed Polar Rover
,”
Proceedings of the IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 6–13
, p.
395
.
11.
Liu
,
D.
,
Sun
,
H.
, and
Jia
,
Q.
,
2008
, “
Stabilization and Path Following of a Spherical Robot
,”
Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics
,
Chengdu, China
,
Sept. 21–24
, pp.
676
682
.
12.
Mahboubi
,
S.
,
Seyyed Fakhrabadi
,
M.
, and
Ghanbari
,
A.
,
2012
, “
Design and Implementation of a Novel Spherical Mobile Robot
,”
J. Intell. Robot. Syst.
,
71
(
1
), pp.
43
64
.
13.
Tomik
,
F.
,
Nudehi
,
S.
,
Flynn
,
L. L.
, and
Mukherjee
,
R.
,
2012
, “
Design, Fabrication and Control of Spherobot: A Spherical Mobile Robot
,”
J. Intell. Robot. Syst.
,
67
(
2
), pp.
117
131
.
14.
Asama
,
J.
,
Burkhardt
,
M. R.
,
Davoodi
,
F.
, and
Burdick
,
J. W.
,
2015
, “
Design Investigation of a Coreless Tubular Linear Generator for a Moball: A Spherical Exploration Robot With Wind-Energy Harvesting Capability
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
244
251
.
15.
Li
,
T.
, and
Liu
,
W.
,
2010
, “
Design and Analysis of a Wind-Driven Spherical Robot With Multiple Shapes for Environment Exploration
,”
J. Aerosp. Eng.
,
24
(
1
), pp.
135
139
.
16.
Li
,
T.
,
Wang
,
Z.
, and
Ji
,
Z.
,
2011
, “
Dynamic Modeling and Simulation of the Internal-and External-Driven Spherical Robot
,”
J. Aerosp. Eng.
,
25
(
4
), pp.
636
640
.
17.
Bai
,
Y.
,
Svinin
,
M.
, and
Yamamoto
,
M.
,
2018
, “
Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot
,”
Regul. Chaotic Dyn.
,
23
(
4
), pp.
372
388
.
18.
Cai
,
Y.
,
Zhan
,
Q.
, and
Xi
,
X.
,
2012
, “
Path Tracking Control of a Spherical Mobile Robot
,”
Mech. Mach. Theory
,
51
(
1
), pp.
58
73
.
19.
Kayacan
,
E.
,
Kayacan
,
E.
,
Ramon
,
H.
, and
Saeys
,
W.
,
2013
, “
Adaptive Neuro-Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-Based Online Learning Algorithm
,”
IEEE Trans. Cybern.
,
43
(
1
), pp.
170
179
.
20.
Hogan
,
F. R.
, and
Forbes
,
J. R.
,
2015
, “
Trajectory Tracking, Estimation, and Control of a Pendulum-Driven Spherical Robot
,”
J. Guid. Control Dyn.
,
39
(
5
), pp.
1119
1125
.
21.
Ivanova
,
T. B.
,
Kilin
,
A. A.
, and
Pivovarova
,
E. N.
,
2018
, “
Controlled Motion of a Spherical Robot With Feedback. I
,”
J. Dyn. Control Syst.
,
24
(
3
), pp.
497
510
.
22.
Ishikawa
,
M.
,
Kitayoshi
,
R.
, and
Sugie
,
T.
,
2011
, “
Volvot : A Spherical Mobile Robot With Eccentric Twin Rotors
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Karon Beach, Phuket, Thailand
,
Dec. 7–11
, pp.
1462
1467
.
23.
Brown
,
H. B. J.
, and
Xu
,
Y.
,
1996
, “
A Single-Wheel, Gyroscopically Stabilized Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, pp.
3658
3663
.
24.
Bhattacharya
,
S.
, and
Agrawal
,
S.
,
2000
, “
Spherical Rolling Robot: A Design and Motion Planning Studies
,”
IEEE Trans. Robot. Autom.
,
16
(
6
), pp.
835
839
.
25.
Borisov
,
A. V.
,
Kilin
,
A. A.
, and
Mamaev
,
I. S.
,
2012
, “
How to Control Chaplygin’s Sphere Using Rotors
,”
Regul. Chaotic Dyn.
,
17
(
3
), pp.
258
272
.
26.
Schroll
,
G. C.
,
2008
, “
Design of a Spherical Vehicle With Flywheel Momentum Storage for High Torque Capabilities
,” Master’s thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
27.
Morinaga
,
A.
,
Svinin
,
M.
, and
Yamamoto
,
M.
,
2014
, “
A Motion Planning Strategy for a Spherical Rolling Robot Driven by Two Internal Rotors
,”
IEEE Trans. Robot.
,
30
(
4
), pp.
993
1002
.
28.
Oriolo
,
G.
, and
Vendittelli
,
M.
,
2005
, “
A Framework for the Stabilization of General Nonholonomic Systems With an Application to the Plate-Ball Mechanism
,”
IEEE Trans. Robot.
,
21
(
2
), pp.
162
175
.
29.
Muralidharan
,
V.
, and
Mahindrakar
,
A. D.
,
2015
, “
Geometric Controllability and Stabilization of Spherical Robot Dynamics
,”
IEEE Trans. Autom. Control
,
60
(
10
), pp.
2762
2767
.
30.
Tafrishi
,
S. A.
,
2014
, “
“RollRoller” Novel Spherical Mobile Robot Basic Dynamical Analysis and Motion Simulations
,” Master’s thesis,
University of Sheffield
,
Sheffield
.
31.
Montana
,
D. J.
,
1988
, “
The Kinematics of Contact and Grasp
,”
Int. J. Robot. Res.
,
7
(
3
), pp.
17
32
.
32.
Svinin
,
M.
, and
Hosoe
,
S.
,
2008
, “
Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area
,”
IEEE Trans. Robot.
,
24
(
3
), pp.
612
625
.
33.
Wittenburg
,
J.
,
2013
,
Dynamics of Systems of Rigid Bodies
,
Springer-Verlag
,
New York
.
34.
Kane
,
T. R.
,
1961
, “
Dynamics of Nonholonomic Systems
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
574
578
.
35.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
1st ed
,
Society of Manufacturing
,
Dearborn, MI
.
36.
Childs
,
P. R.
,
2003
,
Mechanical Design
,
2nd ed
,
Butterworth-Heinemann
,
London, UK
.
37.
AutomationDirect
,
2018
, “
A-Series Double-Act Pneumatic Cylinders
,” www.automationdirect.com, Accessed November 19, 2018.
38.
Street
,
R. L.
,
Watters
,
G. Z.
, and
Vennard
,
J. K.
,
1996
,
Elementary Fluid Mechanics
,
7th ed.
,
Wiley & Sons
,
New York
.
39.
Young
,
D. F.
,
Munson
,
B. R.
,
Okiishi
,
T. H.
, and
Huebsch
,
W. W.
,
2010
,
Brief Fluid: A Brief Introduction
,
5th ed.
,
Wiley and Sons
.
New York
.
40.
Dormand
,
J.
, and
Prince
,
P.
,
1980
, “
A Family of Embedded Runge--Kutta Formulae
,”
J. Comput. Appl. Math.
,
6
(
1
), pp.
19
26
.
41.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The Matlab ODE Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.
42.
Trident Engineering
,
2018
, “
GS61-Series DC Motor
,” www.tridenteng.co.uk, Accessed November 19, 2018.
43.
Hughes
,
E.
,
Hiley
,
J.
,
Brown
,
K.
, and
Smith
,
I. M.
,
2008
,
Hughes Electrical & Electronic Technology
,
10th ed
,
Prentice Hall
,
Harlow, UK
.
44.
Tucker
,
V. A.
,
1975
, “
The Energetic Cost of Moving About: Walking and Running Are Extremely Inefficient Forms of Locomotion. Much Greater Efficiency Is Achieved by Birds, Fish and Bicyclists
,”
Am. Sci.
,
63
(
4
), pp.
413
419
.
You do not currently have access to this content.