A force-limiting buckling flexure has been created which can be used in a wide range of applications where excessive force from an implement can cause harm or damage. The buckling flexure is monolithic, contains no electronics, and can be manufactured using a single shot in an injection molding machine, making it cost effective. In this paper, the design of the flexure is applied to a force-limiting toothbrush as a design study to show its application in a real-world technology. An overview of the buckling flexure is presented, and a structural model is presented to predict when the flexure will elastically buckle. Flexures of different geometries were tested and buckled. The data show that the model can predict buckling of the flexure with an error of 20.84%. A finite element model was also performed which predicts buckling of the flexure within an error of 25.35%. Furthermore, a preliminary model is presented which enables the design of the buckling beam’s displacement, such that the total breakaway deformation can be maximized, making sensing the sudden deformation easier to detect. As part of the application of the buckling flexure, an ergonomic, injection moldable toothbrush was created with the flexure built into the neck of the brush. When the user applies too much force while brushing, the flexure gives way and alerts the user when they have applied too much force; when the user lets off the force, the brush snaps back to its original shape. This design methodology is generalized and can be utilized in other force limited applications where an injection-moldable, pre-set force, and purely mechanical breakaway device is desired.

References

References
1.
Krüger
,
J.
,
Lien
,
T. K.
, and
Verl
,
A.
,
2009
, “
Cooperation of Human and Machines in Assembly Lines
,”
CIRP Ann.—Manuf. Technol.
,
58
(
2
), pp.
628
646
.
2.
De Santis
,
A.
,
Siciliano
,
B.
,
De Luca
,
A.
, and
Bicchi
,
A.
,
2008
, “
An Atlas of Physical Human-Robot Interaction
,”
Mech. Mach. Theory
,
43
(
3
), pp.
253
270
.
3.
Zhang
,
M.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2017
, “
Design and Static Analysis of Elastic Force and Torque Limiting Devices for Safe Physical Human–Robot Interaction
,”
J. Mech. Robot.
,
9
(
2
), p.
021003
.
4.
Canadian Dental Hygienists Association
,
2006
, “
CDHA Position Paper on Tooth Brushing/Déclaration de L’ACHD Sur Le Brossage Des Dents
,”
Can. J. Dent. Hyg.
,
40
(
5
), pp.
1
14
. https://www.cdha.ca/pdfs/Profession/Resources/tooth_brushing_paper_reprint.pdf
5.
White
,
L.
, and
Ingels
,
L.
,
1984
, “
Pressure Sensing Device for Holding a Toothbrush
,” U.S. Patent No. 4,476,604.
6.
Dirksing
,
R.
,
1992
, “
Toothbrush Having Handle Joined to Brush Head by Non-Pinching Flexible Twin Beam Structure
,” U.S. Patent No. 5,105,499.
7.
Piserchio
,
R.
,
2011
, “
Pressure-Sensitive Toothbrush
,” U.S. Patent No. 20110016651A1.
8.
Irizarry
,
J.
,
1994
, “
Pressure Alarm Toothbrush Assembly
,” U.S. Patent No. 5,331,707.
9.
Craig
,
J. J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
J. Dyn. Syst. Meas. Control
,
103
(
2
), pp.
126
133
.
10.
Daniel
,
E. W.
,
1977
, “
Force Feedback Control of Manipulator Fine Motions
,”
J. Dyn. Syst. Meas. Control
,
99
(
2
), pp.
91
97
.
11.
Rosenberg
,
L. B.
, and
Jackson
,
B. G.
,
2002
, “
Force Feedback Device Including Flexure Member Between Actuator and User Object
,” U.S. Patent No. 6,437,771.
12.
Das
,
H.
,
Ohm
,
T. R.
, and
Steele
,
R. D.
,
2002
, “
Tool Actuation and Force Feedback On Robot-Assisted Microsurgery System
,” U.S. Patent No. 6,385,509.
13.
Pierrot
,
F.
,
Dombre
,
E.
,
Dégoulange
,
E.
,
Urbain
,
L.
,
Caron
,
P.
,
Boudet
,
S.
,
Gariépy
,
J.
, and
Mégnien
,
J. L.
,
1999
, “
Hippocrate: A Safe Robot Arm for Medical Applications With Force Feedback
,”
Med. Image Anal.
,
3
(
3
), pp.
285
300
.
14.
Kramer
,
H.
,
2001
, “
Toothbrush Comprising a Flexibly Linked Region in the Head
,” U.S. Patent No. 6,185,779.
15.
Jungnickel
,
U.
,
Altmann
,
N.
, and
Guebler
,
R.
,
2014
, “
Force Sensing Oral Care Instrument
,” U.S. Patent No. 8,832,895.
16.
Fox
,
R.
,
Hippen
,
J.
,
Knaub
,
D.
,
Resuello
,
I.
,
Frank
,
P.
, and
Moskovich
,
R.
,
2003
, “
Replaceable Head Toothbrush Providing Controlled Brushing Pressure
,” U.S. Patent No. 6,502,272.
17.
Giuliani
,
D.
,
McMahon
,
R. W.
, and
McInnes
,
C.
,
1998
, “
Toothbrush With Adaptive Load Sensor
,” U.S. Patent No. 5,784,742.
18.
Huefner
,
N. F.
, and
Burrell
,
F. J.
,
1994
, “
Toothbrush Having Adjustable Brushing Pressure
,” U.S. Patent No. 5,315,732.
19.
Heinzelman
,
B. D.
,
Lamond
,
D. R.
, and
Fontayne
,
D.
,
1998
, “
Resiliently Flexible Toothbrush
,” U.S. Patent No. 5,735,012.
20.
Sundius
,
C. L.
, and
Mcfadden
,
B. P.
,
1999
, “
Pressure Sensing Toothbrush
,” U.S. Patent No. 5,876,207.
21.
Mierau
,
H.-D.
, and
Spindler
,
T.
,
1987
, “
Toothbrush
,” U.S. Patent No. 4,698,869.
22.
Gao
,
Z.
, and
Zhang
,
D.
,
2012
, “
Flexure Parallel Mechanism: Configuration and Performance Improvement of a Compact Acceleration Sensor
,”
J. Mech. Robot.
,
4
(
3
), p.
031002
.
23.
Wei
,
Y.
, and
Xu
,
Q.
,
2016
, “
Design of a Force Sensor Based on Flexure Beams With Piezoresistive and PVDF Elements
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, pp.
1
7
.
24.
Zhang
,
X.
,
Wang
,
G.
, and
Xu
,
Q.
,
2018
, “
Design, Analysis and Testing of a New Compliant Compound Constant-Force Mechanism
,”
Actuators
,
7
(
4
), p.
65
.
25.
Brenner
,
M. P.
,
Lang
,
J. H.
,
Li
,
J.
,
Qiu
,
J.
, and
Slocum
,
A. H.
,
2003
, “
Optimal Design of a Bistable Switch
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
17
), pp.
9663
9667
.
26.
Li
,
J.
,
Brenner
,
M. P.
,
Christen
,
T.
,
Kotilainen
,
M. S.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2005
, “
Deep-Reactive Ion-Etched Compliant Starting Zone Electrostatic Zipping Actuators
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1283
1297
.
27.
An
,
S.
,
Kim
,
B.
,
Kwon
,
S.
,
Moon
,
G.
,
Lee
,
M.
, and
Jhe
,
W.
,
2018
, “
Bifurcation-Enhanced Ultrahigh Sensitivity of a Buckled Cantilever
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
12
), pp.
2884
2889
.
28.
Dobrokhotov
,
V. V.
,
Yazdanpanah
,
M. M.
,
Pabba
,
S.
,
Safir
,
A.
, and
Cohn
,
R. W.
,
2008
, “
Visual Force Sensing With Flexible Nanowire Buckling Springs
,”
Nanotechnology
,
19
(
3
), p.
035502
.
29.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
J. Mech. Robot.
,
7
(
2
), p.
021007
.
30.
Rosema
,
N. A. M.
,
Adam
,
R.
,
Grender
,
J. M.
,
Van der Sluijs
,
E.
,
Supranoto
,
S. C.
, and
Van der Weijden
,
G. A.
,
2014
, “
Gingival Abrasion and Recession in Manual and Oscillating-Rotating Power Brush Users
,”
Int. J. Dent. Hyg.
,
12
(
4
), pp.
257
266
.
31.
Löe
,
H.
,
2000
, “
Oral Hygiene in the Prevention of Caries and Periodontal Disease
,”
Int. Dent. J.
,
50
(
3
), pp.
129
139
.
32.
Timoshenko
,
S.
,
1936
,
Theory of Elastic Stability
,
McGraw-Hill Book Company Inc.
,
New York
.
You do not currently have access to this content.