Driving system parameter optimization (DSPO) is an important approach to improve robots' dynamic performances such as acceleration capacity, load carrying capacity, and operation stability. To achieve better dynamic performance, motors with high power and high cost are generally used. But this leads to a waste of resources. It is difficult to simultaneously make the robots satisfy the prescribed requirements and avoid over conservative design. This issue is much more challenging for parallel machining robots due to the coupling characteristics of the closed kinematic chains. In this paper, a 5 degrees-of-freedom (DoF) parallel machining robot with planar kinematic chains is presented, and its dynamic model is established based on the virtual work principle. Then, a DSPO method for 5-DoF machining robots is proposed by considering the classical machining trajectories that can reflect the robots' performance requirements. The motor output under these trajectories and candidate motor parameters are presented in a comprehensive graph. Combined with motor selection criteria, the feasible motors and usable reduction ratio range are derived. To optimize the reduction ratio, a dynamic index is proposed based on the variance degree of the motor output torque to evaluate driving system's operational stability. On this basis, the optimal reduction ratio is obtained by minimizing this index to improve the stability of machining robots. Based on the proposed method, the DSPO for the 5-DoF parallel machining robot is implemented, and the optimal driving units are generated. The proposed method can be used for the DSPO of other 5-DoF parallel machining robots.

References

References
1.
Xie
,
F. G.
,
Liu
,
X. J.
,
Wang
,
J. S.
, and
Wabner
,
M.
,
2017
, “
Kinematic Optimization of a Five Degrees-of-Freedom Spatial Parallel Mechanism With Large Orientational Workspace
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051005
.
2.
Sun
,
T.
,
Song
,
Y. M.
,
Dong
,
G.
,
Lian
,
B.
, and
Liu
,
J. P.
,
2012
, “
Optimal Design of a Parallel Mechanism With Three Rotational Degrees of Freedom
,”
Rob. Comput. Integr. Manuf.
,
28
(
4
), pp.
500
508
.
3.
Gezgin
,
E.
, and
Ozdemir
,
S.
,
2011
, “
Classification of Manipulators of the Same Origin by Virtue of Compactness and Complexity
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1425
1433
.
4.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Zhou
,
Y. H.
,
2013
, “
A Parallel Robot With SCARA Motions and Its Kinematic Issues
,”
3th IFToMM International Symposium on Robotics and Mechatronics (ISRM 2013)
,
Singapore
,
Oct. 2–4
, pp.
53
62
.
5.
Tsai
,
M. S.
, and
Yuan
,
W. H.
,
2010
, “
Inverse Dynamics Analysis for a 3-PRS Parallel Mechanism Based on a Special Decomposition of the Reaction Forces
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1491
1508
.
6.
Sun
,
T.
,
Wu
,
H.
,
Lian
,
B.
,
Qi
,
Y.
,
Wang
,
P.
, and
Song
,
Y.
,
2017
, “
Stiffness Modeling, Analysis and Evaluation of a 5 Degree of Freedom Hybrid Manipulator for Friction Stir Welding
,”
P. I. Mech. Eng. C-J. Mec.
,
231
(
23
), pp.
4441
4456
.
7.
METROM
,
2015
,
METROM Mobile Machine—On-Site Machining
,
Mechatronische Maschinen GmbH
,
Hartmannsdorf, Germany
.
8.
Song
,
Y.
,
Lian
,
B.
,
Sun
,
T.
,
Dong
,
G.
,
Qi
,
Y.
, and
Gao
,
H.
,
2014
, “
A Novel Five-Degree-of-Freedom Parallel Manipulator and Its Kinematic Optimization
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041008
.
9.
Liu
,
X. J.
,
Han
,
G.
,
Xie
,
F. G.
, and
Meng
,
Q. Z.
,
2018
, “
A Novel Parameter Optimization Method for the Driving System of High-Speed Parallel Robots
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041011
.
10.
Jiang
,
Y.
,
Li
,
T. M.
, and
Wang
,
L. P.
,
2015
, “
The Dynamic Modeling, Redundant-Force Optimization, and Dynamic Performance Analyses of a Parallel Kinematic Machine With Actuation Redundancy
,”
Robotica
,
33
(
2
), pp.
241
263
.
11.
Staicu
,
S.
,
2011
, “
Dynamics of the 6-6 Stewart Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
27
(
1
), pp.
212
220
.
12.
Sokolov
,
A.
, and
Xirouchakis
,
P.
,
2007
, “
Dynamics Analysis of a 3-DOF Parallel Manipulator With R–P–S Joint Structure
,”
Mech. Mach. Theory
,
42
(
5
), pp.
541
557
.
13.
Liang
,
D.
,
Song
,
Y.
,
Sun
,
T.
, and
Jin
,
X.
,
2017
, “
Rigid-Flexible Coupling Dynamic Modeling and Investigation of a Redundantly Actuated Parallel Manipulator With Multiple Actuation Modes
,”
J. Sound Vib.
,
403
, pp.
129
151
.
14.
Sun
,
T.
,
Liang
,
D.
, and
Song
,
Y.
,
2018
, “
Singular-Perturbation-Based Nonlinear Hybrid Control of Redundant Parallel Robot
,”
IEEE T. Ind. Electron.
,
65
(
4
), pp.
3326
3336
.
15.
Song
,
Y.
,
Dong
,
G.
,
Sun
,
T.
, and
Lian
,
B.
,
2016
, “
Elasto-dynamic Analysis of a Novel 2-DoF Rotational Parallel Mechanism With an Articulated Travelling Platform
,”
Meccanica
,
51
(
7
), pp.
1547
1557
.
16.
Xie
,
F. G.
,
Liu
,
X. J.
,
Luo
,
X.
, and
Wabner
,
M.
,
2016
, “
Mobility, Singularity, and Kinematics Analyses of a Novel Spatial Parallel Mechanism
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061022
.
17.
Pasch
,
K. A.
, and
Seering
,
W. P.
,
1984
, “
On the Drive Systems for High-Performance Machines
,”
ASME J. Mech. Trans. Autom.
,
106
(
1
), pp.
102
108
.
18.
Van de Straete
,
H. J.
,
Degezelle
,
P.
, and
Schutter
,
J.
,
1998
, “
Servo Motor Selection Criterion for Mechatronic Applications
,”
IEEE/ASME Trans. Mechatronics
,
3
(
1
), pp.
43
50
.
19.
Meoni
,
F.
, and
Carricato
,
M.
,
2018
, “
Optimal Selection of the Motor-Reducer Unit in Servo-Controlled Machinery: A Continuous Approach
,”
Mechatronics
,
56
(
2018
), pp.
132
145
.
20.
Choi
,
C.
,
Jung
,
S.
, and
Kim
,
S.
,
2007
, “
A Motor Selection Technique for Designing a Manipulator
,”
IEEE International Conference on Control, Automation and Systems (ICCAS 07)
,
Seoul, South Korea
,
Oct. 17–20
, pp.
2487
2492
.
21.
Cusimano
,
G.
,
2011
, “
Choice of Electrical Motor and Transmission in Mechatronic Applications: The Torque Peak
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1207
1235
.
22.
Cusimano
,
G.
, and
Casolo
,
F.
,
2016
, “
An Almost Comprehensive Approach for the Choice of Motor and Transmission in Mechatronics Applications: Motor Thermal Problem
,”
Mechatronics
,
40
, pp.
96
105
.
23.
Giberti
,
H.
,
Cinquemani
,
S.
, and
Legnani
,
G.
,
2010
, “
Effects of Transmission Mechanical Characteristics on the Choice of a Motor-Reducer
,”
Mechatronics
,
20
(
5
), pp.
604
610
.
24.
Cinquemani
,
S.
,
Giberti
,
H.
, and
Bassetti
,
M.
,
2013
, “
Optimal Design, Simulation and Experimental Tests of an 5R PKM Manipulator
,”
IEEE International Conference on Mechatronics (ICM 2013)
,
Vicenza, Italy
,
Feb. 27–28
, pp.
430
435
.
25.
Bartlett
,
H. L.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2017
, “
Optimal Transmission Ratio Selection for Electric Motor Driven Actuators With Known Output Torque and Motion Trajectories
,”
ASME J. Dyn. Syst. Meas. Contr.
,
139
(
10
), p.
101013
.
26.
Huang
,
T.
,
Zhao
,
X. M.
, and
Wang
,
Y.
,
2001
, “
Determination of Servomotor Parameters of a Tripod-Based Parallel Kinematic Machine
,”
Prog. Nat. Sci.
,
11
(
8
), pp.
612
621
.
27.
Huang
,
T.
,
Mei
,
J. P.
,
Li
,
Z.
,
Zhao
,
X. M.
, and
Chetwynd
,
D. G.
,
2005
, “
A Method for Estimating Servomotor Parameters of a Parallel Robot for Rapid Pick-and-Place Operations
,”
ASME J. Mech. Design
,
127
(
4
), pp.
596
601
.
28.
Liu
,
X. J.
,
Han
,
G.
,
Xie
,
F. G.
, and
Meng
,
Q. Z.
,
2018
, “
A Novel Acceleration Capacity Index Based on Motion/Force Transmissibility for High-Speed Parallel Robots
,”
Mech. Mach. Theory
,
126
, pp.
155
170
.
29.
Wu
,
J.
,
Gao
,
Y.
,
Zhang
,
B. B.
, and
Wang
,
L. P.
,
2017
, “
Workspace and Dynamic Performance Evaluation of the Parallel Manipulators in a Spray-Painting Equipment
,”
Rob. Comput. Integr. Manuf.
,
44
, pp.
199
207
.
30.
Shao
,
Z. F.
,
Tang
,
X. Q.
,
Chen
,
X.
, and
Wang
,
L. P.
,
2012
, “
Research on the Inertia Matching of the Stewart Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
28
(
6
), pp.
649
659
.
31.
Zhao
,
Y. J.
, and
Gao
,
F.
,
2009
, “
Dynamic Performance Comparison of the 8PSS Redundant Parallel Manipulator and Its Non-Redundant Counterpart—The 6PSS Parallel Manipulator
,”
Mech. Mach. Theory
,
44
(
5
), pp.
991
1008
.
32.
Zhao
,
Y. J.
, and
Gao
,
F.
,
2009
, “
Dynamic Formulation and Performance Evaluation of the Redundant Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
25
(
4–5
), pp.
770
781
.
33.
Namazi
,
H.
,
Farid
,
A. A.
, and
Seng
,
C. T.
,
2018
, “
Fractal Based Analysis of the Influence of Cutting Depth on Complex Structure of Cutting Forces in Rough End Milling
,”
Fractals
,
26
(
5
), pp.
1850068
.
34.
Luo
,
M.
,
Hou
,
Y.
, and
Zhang
,
D.
,
2016
, “
Feedrate Optimization for Worn Cutter With Measured Cutting Force in Rough Milling
,”
IEEE International Conference on Advanced Intelligent Mechatronics (AIM 2016)
,
Alberta, Canada
, pp.
345
350
.
35.
Lin
,
B.
,
Wang
,
L.
,
Guo
,
Y.
, and
Yao
,
J.
,
2016
, “
Modeling of Cutting Forces in End Milling Based on Oblique Cutting Analysis
,”
Int. J. Adv. Manuf. Tech.
,
84
(
1–4
), pp.
727
736
.
36.
Bonev
,
I. A.
,
2008
, “
Direct Kinematics of Zero-Torsion Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA 2008)
,
Pasadena, CA
,
May 19–23
, pp.
3851
3856
.
37.
Wang
,
W.
,
Jiang
,
Z.
,
Tao
,
W.
, and
Zhuang
,
W.
,
2015
, “
A New Test Part to Identify Performance of Five-Axis Machine Tool—Part I: Geometrical and Kinematic Characteristics of S Part
,”
Int. J. Adv. Manuf. Tech.
,
79
(
5–8
), pp.
729
738
.
38.
Wei
,
B.
,
Gao
,
F.
,
Chen
,
J.
,
He
,
J.
, and
Zhao
,
X.
,
2011
, “
A Method for Selecting Driving System Parameters of a New Electric Shovel's Excavating Mechanism With Three-DOF
,”
P. I. Mech. Eng. C-J. Mec.
,
225
(
11
), pp.
2661
2672
.
39.
Scippa
,
A.
,
Sallese
,
L.
,
Grossi
,
N.
, and
Campatelli
,
G.
,
2015
, “
Improved Dynamic Compensation for Accurate Cutting Force Measurements in Milling Applications
,”
Mech. Syst. Signal Pr.
,
54
, pp.
314
324
.
This content is only available via PDF.
You do not currently have access to this content.