The dynamics model of 4-SPS/PS parallel mechanism with a flexible moving platform is formulated based on the equation of motion. Firstly, the dynamics model of flexible moving platform is formulated based on the floating frame of reference formulation. In order to avoid the wrong solutions caused by an inappropriate set of reference conditions, the fixed-fixed reference conditions are carefully selected according to the structure of parallel mechanism. Secondly, considering that the original Craig–Bampton (CB) method only represents the free-free modes. In order to use CB method to obtain fixed-fixed modes, the original CB method is improved by imposing the reference conditions prior to obtaining the static correction modes and fixed interface modes. In addition, the dynamics analysis of 4-SPS/PS parallel mechanism with flexible moving platform based on both free-free modes and fixed-fixed modes are implemented, respectively. Finally, the simulations show that the dynamic responses obtained using fixed-fixed modes are close to the ideal dynamic response, which proves the correctness of improved CB method. Moreover, the maximum percentage error of simulation results between using free-free modes and using fixed-fixed modes exceeds 100%, it is clear that the solutions based on free-free modes are not reasonable. Eventually, the conclusions prove that the deformation caused by high-speed and heavy-load should not be neglected in the parallel mechanism.

References

References
1.
Pan
,
Y.
, and
Gao
,
F.
,
2017
, “
Position Model Computational Complexity of Walking Robot With Different Parallel Leg Mechanism Topology Patterns
,”
Mech. Mach. Theory
,
107
, pp.
324
337
.
2.
Karimi Eskandary
,
P.
, and
Angeles
,
J.
,
2018
, “
The Dynamics of a Parallel Schönflies-Motion Generator
,”
Mech. Mach. Theory
,
119
, pp.
119
129
.
3.
Jiang
,
Y.
,
Li
,
T.
,
Wang
,
L.
, and
Chen
,
F.
,
2018
, “
Improving Tracking Accuracy of a Novel 3-DOF Redundant Planar Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
119
, pp.
198
218
.
4.
Wang
,
G.
,
2017
, “
Elastodynamics Modeling of 4-SPS/CU Parallel Mechanism With Flexible Moving Platform Based on Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
, pp.
1
16
.
5.
Khalil
,
W.
,
Boyer
,
F.
, and
Morsli
,
F.
,
2017
, “
General Dynamic Algorithm for Floating Base Tree Structure Robots With Flexible Joints and Links
,”
ASME J. Mech. Robot.
,
9
(
3
), p.
031003
.
6.
Piras
,
G.
,
Cleghorn
,
W. L.
, and
Mills
,
J. K.
,
2005
, “
Dynamic Finite-Element Analysis of a Planar High-Speed, High-Precision Parallel Manipulator With Flexible Links
,”
Mech. Mach. Theory
,
40
(
7
), pp.
849
862
.
7.
Li
,
Y.
,
Chen
,
G.
,
Sun
,
D.
,
Gao
,
Y.
, and
Wang
,
K.
,
2016
, “
Dynamic Analysis and Optimization Design of a Planar Slider-Crank Mechanism With Flexible Components and Two Clearance Joints
,”
Mech. Mach. Theory
,
99
, pp.
37
57
.
8.
Wang
,
X.
, and
Mills
,
J. K.
,
2006
, “
Dynamic Modeling of a Flexible-Link Planar Parallel Platform Using a Substructuring Approach
,”
Mech. Mach. Theory
,
41
(
6
), pp.
671
687
.
9.
Zhou
,
Z.
,
Xi
,
J.
, and
Mechefske
,
C. K.
,
2006
, “
Modeling of a Fully Flexible 3PRS Manipulator for Vibration Analysis
,”
J. Mech. Des.
,
128
(
2
), pp.
403
412
.
10.
Zhang
,
X.
,
Mills
,
J. K.
, and
Cleghorn
,
W. L.
,
2007
, “
Dynamic Modeling and Experimental Validation of a 3-PRR Parallel Manipulator With Flexible Intermediate Links
,”
J. Intell. Robot. Syst. Theory Appl.
,
50
(
4
), pp.
323
340
.
11.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2010
, “
Design and Dynamics of a 3-DOF Flexure-Based Parallel Mechanism for Micro/Nano Manipulation
,”
Microelectron. Eng.
,
87
(
2
), pp.
230
241
.
12.
Rezaei
,
A.
,
Akbarzadeh
,
A.
, and
Akbarzadeh-T
,
M. R.
,
2012
, “
An Investigation on Stiffness of a 3-PSP Spatial Parallel Mechanism With Flexible Moving Platform Using Invariant Form
,”
Mech. Mach. Theory
,
51
, pp.
195
216
.
13.
Long
,
P.
,
Khalil
,
W.
, and
Martinet
,
P.
,
2014
, “
Dynamic Modeling of Parallel Robots With Flexible Platforms
,”
Mech. Mach. Theory
,
81
, pp.
21
35
.
14.
Zhang
,
Q.
,
Mills
,
J. K.
,
Cleghorn
,
W. L.
,
Jin
,
J.
, and
Zhao
,
C.
,
2015
, “
Trajectory Tracking and Vibration Suppression of a 3-PRR Parallel Manipulator With Flexible Links
,”
Multibody Syst. Dyn.
,
33
(
1
), pp.
27
60
.
15.
Sharifnia
,
M.
, and
Akbarzadeh
,
A.
,
2016
, “
Dynamics and Vibration of a 3-PSP Parallel Robot With Flexible Moving Platform
,”
JVC/Journal Vib. Control
,
22
(
4
), pp.
1095
1116
.
16.
Ebrahimi
,
S.
, and
Eshaghiyeh-Firoozabadi
,
A.
,
2016
, “
Dynamic Performance Evaluation of Serial and Parallel RPR Manipulators With Flexible Intermediate Links
,”
Iran. J. Sci. Technol.—Trans. Mech. Eng.
,
40
(
3
), pp.
169
180
.
17.
Liang
,
D.
,
Song
,
Y.
,
Sun
,
T.
, and
Jin
,
X.
,
2017
, “
Rigid-Flexible Coupling Dynamic Modeling and Investigation of a Redundantly Actuated Parallel Manipulator With Multiple Actuation Modes
,”
J. Sound Vib.
,
403
, pp.
129
151
.
18.
Liang
,
D.
,
Song
,
Y.
,
Sun
,
T.
, and
Jin
,
X.
,
2018
, “
Dynamic Modeling and Hierarchical Compound Control of a Novel 2-DOF Flexible Parallel Manipulator With Multiple Actuation Modes
,”
Mech. Syst. Signal Process.
,
103
, pp.
413
439
.
19.
Jiang
,
L.
,
Gao
,
B.
, and
Zhu
,
Z.
,
2017
, “
Design and Nonlinear Control of a 2-DOF Flexible Parallel Humanoid Arm Joint Robot
,”
Shock Vib.
,
2017
, p.
14
.
20.
Zhang
,
Q.
,
Li
,
C.
,
Zhang
,
J.
, and
Zhang
,
J.
,
2017
, “
Smooth Adaptive Sliding Mode Vibration Control of a Flexible Parallel Manipulator With Multiple Smart Linkages in Modal Space
,”
J. Sound Vib.
,
411
, pp.
1
19
.
21.
Sharifnia
,
M.
, and
Akbarzadeh
,
A.
,
2016
, “
Approximate Analytical Solution for Vibration of a 3-PRP Planar Parallel Robot With Flexible Moving Platform
,”
Robotica
,
34
(
1
), pp.
71
97
.
22.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
,
4th ed.
,
Cambridge University Press
,
Cambridge
.
23.
Shabana
,
A. A.
, and
Wang
,
G.
,
2018
, “
Durability Analysis and Implementation of the Floating Frame of Reference Formulation
,”
Proc. I. Mech. E Part K J. Multi-Body Dyn.
,
232
(
3
), pp.
295
313
.
24.
Batoz
,
J-L
, and
Tahar
,
M. B.
,
1982
, “
Evaluation of a New Quadrilateral Thin Plate Bending Element
,”
Int. J. Numer. Methods Eng.
,
18
(
11
), pp.
1655
1677
.
25.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.
26.
Gladwell
,
G. M. L.
,
1964
, “
Branch Mode Analysis of Vibrating Systems
,”
J. Sound Vib.
,
1
(
1
), pp.
41
59
.
27.
Rubin
,
S.
,
1975
, “
Improved Component-Mode Representation for Structural Dynamic Analysis
,”
AIAA J.
,
13
(
8
), pp.
995
1006
.
28.
Kuran
,
B.
, and
Özgüven
,
H. N.
,
1996
, “
A Modal Superposition Method for Non-Linear Structures
,”
J. Sound Vib.
,
189
(
3
), pp.
315
339
.
29.
Craig
,
RR
,
1995
, “
Substructure Methods in Vibration
,”
Trans. ASME, Spec. 50th Anniv. Des. Issue
,
117
, pp.
207
213
.
30.
Kim
,
J.
,
Lee
,
K.
, and
Lee
,
P.
,
2014
, “
Estimating Relative Eigenvalue Errors in the Craig-Bampton Method
,”
Comput. Struct.
,
139
, pp.
54
64
.
31.
Kim
,
J.
,
Kim
,
J.
, and
Lee
,
P.
,
2017
, “
Improving the Accuracy of the Dual Craig-Bampton Method
,”
Comput. Struct.
,
191
, pp.
22
32
.
32.
Wang
,
G.
, and
Liu
,
H.
,
2018
, “
Three-Dimensional Wear Prediction of Four-Degrees-of- Freedom Parallel Mechanism With Clearance Spherical Joint and Flexible Moving Platform
,”
J. Tribol.
,
140
(
2
), pp.
1
14
.
33.
Shabana
,
A. A.
,
2008
,
Computational Continuum Mechanics I
,
Cambridge University Press
,
Cambridge
.
34.
Wanji
,
C.
, and
Cheung
,
Y. K.
,
1998
, “
Refined Triangular Discrete Kirchhoff Plate Element for Thin Plate Bending, Vibration and Buckling Analysis
,”
Int. J. Numer. Methods Eng.
,
41
(
8
), pp.
1507
1525
.
35.
Shabana
,
A. A.
,
Wang
,
G.
, and
Kulkarni
,
S.
,
2018
, “
Further Investigation on the Coupling Between the Reference and Elastic Displacements in Flexible Body Dynamics
,”
J. Sound Vib.
,
427
, pp.
159
177
.
You do not currently have access to this content.