Lower-limb biomechatronic devices (i.e., prostheses and exoskeletons) depend upon onboard batteries to power wearable sensors, actuators, and microprocessors, therein inherently limiting their operating durations. Regenerative braking, also termed electrical energy regeneration, represents a promising solution to the aforementioned shortcomings. Regenerative braking converts the otherwise dissipated mechanical energy during locomotion into electrical energy for recharging the onboard batteries, while simultaneously providing negative mechanical work for controlled system deceleration. This paper reviewed the electromechanical design and optimization of lower-limb biomechatronic devices with electrical energy regeneration. The technical review starts by examining human walking biomechanics (i.e., mechanical work, power, and torque about the hip, knee, and ankle joints) and proposes general design principles for regenerative braking prostheses and exoskeletons. Analogous to electric and hybrid electric vehicle powertrains, there are numerous mechatronic design components that could be optimized to maximize electrical energy regeneration, including the mechanical power transmission, electromagnetic machine, electrical drive, device mass and moment of inertia, and energy storage devices. Design optimization of these system components is individually discussed while referencing the latest advancements in robotics and automotive engineering. The technical review demonstrated that existing systems (1) are limited to level-ground walking applications and (2) have maximum energy regeneration efficiencies between 30% and 37%. Accordingly, potential future directions for research and innovation include (1) regenerative braking during dynamic movements like sitting down and slope and staircase descent and (2) utilizing high-torque-density electromagnetic machines and low-impedance mechanical power transmissions to maximize energy regeneration efficiencies.

References

References
1.
Andrysek
,
J.
, and
Chau
,
G.
,
2007
, “
An Electromechanical Swing-Phase-Controlled Prosthetic Knee Joint for Conversion of Physiological Energy to Electrical Energy: Feasibility Study
,”
IEEE Trans. Biomed. Eng.
,
54
(
12
), pp.
2276
2283
.
2.
Rarick
,
R.
,
Richter
,
H.
,
Van Den Bogert
,
A.
,
Simon
,
D.
,
Warner
,
H.
, and
Barto
,
T.
,
2014
, “
Optimal Design of a Transfemoral Prosthesis With Energy Storage and Regeneration
,”
Proceedings of the American Control Conference
,
Portland,
OR
,
June 4–6
, pp.
4108
4113
.
3.
Lenzi
,
T.
,
Cempini
,
M.
,
Hargrove
,
L.
, and
Kuiken
,
T.
,
2017
, “
Design, Development, and Testing of a Lightweight Hybrid Robotic Knee Prosthesis
,”
Int. J. Rob. Res.
,
37
(
8
), pp.
953
976
.
4.
Laschowski
,
B.
, and
Andrysek
,
J.
,
2018
, “
Electromechanical Design of Robotic Transfemoral Prostheses
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
, p.
V05AT07A054
.
5.
Niu
,
P.
,
Chapman
,
P.
,
Riemer
,
R.
, and
Zhang
,
X.
,
2004
, “
Evaluation of Motions and Actuation Methods for Biomechanical Energy Harvesting
,”
Proceedings of the IEEE Annual Power Electronics Specialists Conference
,
Aachen, Germany
,
June 20–25
, pp.
2100
2106
.
6.
Young
,
A. J.
, and
Ferris
,
D. P.
,
2017
, “
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
171
182
.
7.
Tran
,
M.
,
Gabert
,
L.
,
Cempini
,
M.
, and
Lenzi
,
T.
,
2019
, “
A Lightweight, Efficient Fully-Powered Knee Prosthesis With Actively Variable Transmission
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1186
1193
.
8.
Andrysek
,
J.
,
Liang
,
T.
, and
Steinnagel
,
B.
,
2009
, “
Evaluation of a Prosthetic Swing-Phase Controller With Electrical Power Generation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
4
), pp.
390
396
.
9.
Barto
,
T.
,
2017
, “
Design and Control of Electronic Motor Drives for Regenerative Robotics
,”
MS thesis
,
Department of Electrical Engineering and Computer Science, Cleveland State University
,
OH
.
10.
Kashiri
,
N.
,
Abate
,
A.
,
Abram
,
S. J.
,
Albu-Schaffer
,
A.
,
Clary
,
P. J.
,
Daley
,
M.
,
Faraji
,
S.
,
Furnemont
,
R.
,
Garabini
,
M.
,
Geyer
,
H.
,
Grabowski
,
A. M.
,
Hurst
,
J.
,
Malzahn
,
J.
,
Mathijssen
,
G.
,
Remy
,
D.
,
Roozing
,
W.
,
Shahbazi
,
M.
,
Simha
,
S. N.
,
Song
,
J. B.
,
Smit-Anseeuw
,
N.
,
Stramigioli
,
S.
,
Vanderborght
,
B.
,
Yesilevskiy
,
Y.
, and
Tsagarakis
,
N.
,
2018
, “
An Overview on Principles for Energy Efficient Robot Locomotion
,”
Front. Rob. AI
,
5
, p.
129
.
11.
Tucker
,
M. R.
, and
Fite
,
K. B.
,
2010
, “
Mechanical Damping With Electrical Regeneration for a Powered Transfemoral Prosthesis
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Montreal, Canada
,
July 6–9
, pp.
13
18
.
12.
Warner
,
H.
,
Simon
,
D.
,
Mohammadi
,
H.
, and
Richter
,
H.
,
2016
, “
Switched Robust Tracking/Impedance Control for an Active Transfemoral Prosthesis
,”
Proceedings of the American Control Conference
,
Boston,
MA
,
July 6–8
, pp.
2187
2192
.
13.
Li
,
Q.
,
Naing
,
V.
, and
Donelan
,
J. M.
,
2009
, “
Development of a Biomechanical Energy Harvester
,”
J. Neuroeng. Rehabil.
,
6
, p.
22
.
14.
Riemer
,
R.
, and
Shapiro
,
A.
,
2011
, “
Biomechanical Energy Harvesting From Human Motion: Theory, State of the Art, Design Guidelines, and Future Directions
,”
J. Neuroeng. Rehabil.
,
8
, p.
22
.
15.
Schertzer
,
E.
, and
Riemer
,
R.
,
2015
, “
Harvesting Biomechanical Energy or Carrying Batteries? An Evaluation Method Based on a Comparison of Metabolic Power
,”
J. Neuroeng. Rehabil.
,
12
, p.
30
.
16.
Donelan
,
J. M.
,
Naing
,
V.
, and
Li
,
Q.
,
2009
, “
Biomechanical Energy Harvesting
,”
Proceedings of the IEEE Radio and Wireless Symposium
,
San Diego, CA
,
Jan. 18–22
, pp.
1
4
.
17.
Selinger
,
J. C.
, and
Donelan
,
J. M.
,
2016
, “
Myoelectric Control for Adaptable Biomechanical Energy Harvesting
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
3
), pp.
364
373
.
18.
Donelan
,
J. M.
,
Li
,
Q.
,
Naing
,
V.
,
Hoffer
,
J. A.
,
Weber
,
D. J.
, and
Kuo
,
A. D.
,
2008
, “
Biomechanical Energy Harvesting: Generating Electricity During Walking With Minimal User Effort
,”
Science
,
319
(
5864
), pp.
807
810
.
19.
Li
,
Q.
,
Naing
,
V.
,
Hoffer
,
J. A.
,
Weber
,
D. J.
,
Kuo
,
A. D.
, and
Donelan
,
J. M.
,
2008
, “
Biomechanical Energy Harvesting: Apparatus and Method
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
3672
3677
.
20.
Hitt
,
J.
,
Sugar
,
T.
,
Holgate
,
M.
,
Bellman
,
R.
, and
Hollander
,
K.
,
2009
, “
Robotic Transtibial Prosthesis With Biomechanical Energy Regeneration
,”
Ind. Rob.
,
36
(
5
), pp.
441
447
.
21.
Hitt
,
J. K.
,
Sugar
,
T. G.
,
Holgate
,
M.
, and
Bellman
,
R.
,
2010
, “
An Active Foot-Ankle Prosthesis With Biomechanical Energy Regeneration
,”
ASME J. Med. Devices
,
4
(
1
), p.
011003
.
22.
Mooney
,
L.
, and
Herr
,
H.
,
2013
, “
Continuously-Variable Series-Elastic Actuator
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics
,
Seattle, WA
,
June 24–26
, pp.
1
6
.
23.
Van Den Bogert
,
A. J.
,
Samorezov
,
S.
,
Davis
,
B. L.
, and
Smith
,
W. A.
,
2012
, “
Modeling and Optimal Control of an Energy-Storing Prosthetic Knee
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051007
.
24.
Alo
,
R.
,
Bottiglione
,
F.
, and
Mantriota
,
G.
,
2016
, “
Artificial Knee Joints Actuators With Energy Recovery Capabilities: A Comparison of Performance
,”
J. Rob.
,
2016
(
2016
), pp.
1
13
.
25.
Rome
,
L. C.
,
Flynn
,
L.
,
Goldman
,
E. M.
, and
Yoo
,
T. D.
,
2005
, “
Generating Electricity While Walking With Loads
,”
Science
,
309
(
5741
), pp.
1725
1728
.
26.
Rizzoni
,
G.
, and
Peng
,
H.
,
2013
, “
Hybrid and Electrified Vehicles: The Role of Dynamics and Control
,”
ASME Mech. Eng. Mag.
,
135
(
3
), pp.
S10
S17
.
27.
Paradiso
,
J. A.
, and
Starner
,
T.
,
2005
, “
Energy Scavenging for Mobile and Wireless Electronics
,”
IEEE Pervasive Comput.
,
4
(
1
), pp.
18
27
.
28.
Choi
,
Y. M.
,
Lee
,
M. G.
, and
Jeon
,
Y.
,
2017
, “
Wearable Biomechanical Energy Harvesting Technologies
,”
Energies
,
10
(
10
), p.
1483
.
29.
Winter
,
D. A.
,
1983
, “
Energy Generation and Absorption at the Ankle and Knee During Fast, Natural, and Slow Cadences
,”
Clin. Orthop. Relat. Res.
, (
175
), pp.
147
154
.
30.
Winter
,
D. A.
,
1991
,
The Biomechanics and Motor Control of Human Gait: Normal, Elderly, and Pathological
,
Waterloo Biomechanics
,
Waterloo, Canada
.
31.
Rouse
,
E. J.
,
Mooney
,
L. M.
, and
Herr
,
H. M.
,
2014
, “
Clutchable Series-Elastic Actuator: Implications for Prosthetic Knee Design
,”
Int. J. Rob. Res.
,
33
(
13
), pp.
1611
1625
.
32.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatron.
,
14
(
6
), pp.
667
676
.
33.
Seth
,
B.
,
1987
, “
Energy Regeneration and Its Application to Active Above-Knee Prostheses
,”
PhD Dissertation
,
Department of Mechanical Engineering, Massachusetts Institute of Technology
,
MA
.
34.
Hunter
,
B. L.
,
1981
, “
Design of a Self-Contained, Active, Regenerative Computer Controlled Above-Knee Prosthesis
,”
MS thesis
,
Department of Mechanical Engineering, Massachusetts Institute of Technology
,
MA
.
35.
Khalaf
,
P.
, and
Richter
,
H.
,
2017
, “
On Global, Closed-Form Solutions to Parametric Optimization Problems for Robots With Energy Regeneration
,”
ASME J. Dyn. Syst. Meas. Contr.
,
140
(
3
), p.
031003
.
36.
Seth
,
B.
, and
Flowers
,
W. C.
,
1990
, “
Generalized Actuator Concept for the Study of the Efficiency of Energetic Systems
,”
ASME J. Dyn. Syst. Meas. Contr.
,
112
(
2
), pp.
233
238
.
37.
Heinzmann
,
R. K.
,
Seth
,
B.
, and
Turi
,
J.
,
1992
, “
Application of a Generalized Actuator Model to the Study of Energy Regeneration Control Strategies
,”
ASME J. Dyn. Syst. Meas. Contr.
,
114
(
3
), pp.
462
467
.
38.
Barto
,
T.
, and
Simon
,
D.
,
2017
, “
Neural Network Control of an Optimized Regenerative Motor Drive for a Lower-Limb Prosthesis
,”
Proceedings of the American Control Conference
,
Seattle, WA
,
May 24–26
, pp.
5330
5335
.
39.
Seaman
,
A. N.
, and
McPhee
,
J.
,
2010
, “
Symbolic Math-Based Battery Modeling for Electric Vehicle Simulation
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
Aug. 15–18
, pp.
111
119
.
40.
Kim
,
S.
,
Azad
,
N. L.
, and
McPhee
,
J.
,
2015
, “
High-Fidelity Modelling of an Electric Vehicle
,”
Proceedings of the ASME Dynamic Systems and Control Conference
,
Columbus, OH
,
Oct. 28–30
, p.
V002T34A006
.
41.
Ing
,
A. H.
, and
McPhee
,
J.
,
2015
, “
Automated Topology Optimization of Hybrid Electric Vehicle Powertrains
,”
Int. J. Electric Hybrid Veh.
,
7
(
4
), pp.
342
361
.
42.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
,
2009
, “
Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
51
66
.
43.
Tabor
,
K. A.
,
1988
, “
The Real-Time Digital Control of a Regenerative Above-Knee Prosthesis
,”
MS thesis
,
Department of Mechanical Engineering, Massachusetts Institute of Technology
,
MA
.
44.
Awad
,
M. I.
,
Dehghani-Sanij
,
A. A.
,
Moser
,
D.
, and
Zahedi
,
S.
,
2016
, “
Motor Electrical Damping for Back-Drivable Prosthetic Knee
,”
Proceedings of the IEEE International Conference on Research and Education in Mechatronics and France-Japan and Europe-Asia Congress on Mechatronics
,
Compiegne, France
,
June 15–17
, pp.
348
353
.
45.
Zhu
,
H.
,
Doan
,
J.
,
Stence
,
C.
,
Lv
,
G.
,
Elery
,
T.
, and
Gregg
,
R.
,
2017
, “
Design and Validation of a Torque Dense, Highly Backdrivable Powered Knee-Ankle Orthosis
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
, pp.
504
510
.
46.
Elery
,
T.
,
Rezazadeh
,
S.
,
Nesler
,
C.
,
Doan
,
J.
,
Zhu
,
H.
, and
Gregg
,
R. D.
,
2018
, “
Design and Benchtop Validation of a Powered Knee-Ankle Prosthesis With High-Torque, Low-Impedance Actuators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Brisbane, Australia
,
May 21–25
, pp.
2788
2795
.
47.
Rohani
,
F.
,
Richter
,
H.
, and
Van Den Bogert
,
A. J.
,
2017
, “
Optimal Design and Control of an Electromechanical Transfemoral Prosthesis With Energy Regeneration
,”
PLoS One
,
12
(
11
), p.
e0188266
.
48.
Rezazadeh
,
S.
, and
Hurst
,
J. W.
,
2014
, “
On the Optimal Selection of Motors and Transmissions for Electromechanical and Robotic Systems
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
4605
4611
.
49.
Lv
,
G.
,
Zhu
,
H.
, and
Gregg
,
R. D.
,
2018
, “
On the Design and Control of Highly Backdrivable Lower-Limb Exoskeletons: A Discussion of Past and Ongoing Work
,”
IEEE Control Syst. Mag.
,
38
(
6
), pp.
88
113
.
50.
Bolivar
,
E.
,
Rezazadeh
,
S.
, and
Gregg
,
R.
,
2017
, “
A General Framework for Minimizing Energy Consumption of Series Elastic Actuators with Regeneration
,”
Proceedings of the ASME Dynamic Systems and Control Conference
,
Tysons, VA
,
Oct. 11–13
, p.
V001T36A005
.
51.
Gualter Dos Santos
,
E.
, and
Richter
,
H.
,
2018
, “
Modeling and Control of a Novel Variable-Stiffness Regenerative Actuator
,”
Proceedings of the ASME Dynamic Systems and Control Conference
,
Atlanta, GA
,
Sept. 30–Oct. 3
, p.
V002T24A003
.
52.
Lawson
,
B. E.
,
Shultz
,
A. H.
, and
Goldfarb
,
M.
,
2013
, “
Evaluation of a Coordinated Control System for a Pair of Powered Transfemoral Prostheses
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
3888
3893
.
53.
Lawson
,
B. E.
,
Mitchell
,
J.
,
Truex
,
D.
,
Shultz
,
A.
,
Ledoux
,
E.
, and
Goldfarb
,
M.
,
2014
, “
A Robotic Leg Prosthesis: Design, Control, and Implementation
,”
IEEE Rob. Autom. Mag.
,
21
(
4
), pp.
70
81
.
54.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics
,
Kyoto, Japan
,
June 23–26
, pp.
638
644
.
55.
Martinez-Villalpando
,
E. C.
, and
Herr
,
H.
,
2009
, “
Agonist-Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking
,”
J. Rehabil. Res. Dev.
,
46
(
3
), pp.
361
373
.
56.
Martinez-Villalpando
,
E. C.
,
Mooney
,
L.
,
Elliott
,
G.
, and
Herr
,
H.
,
2011
, “
Antagonistic Active Knee Prosthesis. A Metabolic Cost of Walking Comparison With a Variable-Damping Prosthetic Knee
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Boston, MA
,
Aug. 30–Sept. 3
, pp.
8519
8522
.
57.
Ghorbanpour
,
A.
, and
Richter
,
H.
,
2018
, “
Control With Optimal Energy Regeneration in Robot Manipulators Driven by Brushless DC Motors
,”
Proceedings of the ASME Dynamic Systems and Control Conference
,
Atlanta, GA
,
Sept. 30–Oct. 3
, p.
V001T04A003
.
58.
Warner
,
H. E.
,
Simon
,
D.
, and
Richter
,
H.
,
2016
, “
Design Optimization and Control of a Crank-Slider Actuator for a Lower-Limb Prosthesis With Energy Regeneration
,”
Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics
,
Banff, Canada
,
July 12–15
, pp.
1430
1435
.
59.
Richter
,
H.
,
2015
, “
A Framework for Control of Robots With Energy Regeneration
,”
ASME J. Dyn. Syst. Meas. Contr.
,
137
(
9
), p.
091004
.
60.
Wildi
,
T.
,
2006
,
Electrical Machines, Drives and Power Systems
,
Pearson Education
,
London
.
61.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2016
, “
Design and Characterization of a Torque-Controllable Actuator for Knee Assistance During Sit-to-Stand
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Orlando, FL
,
Aug. 16–20
, pp.
2228
2231
.
62.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2017
, “
Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance
,”
IEEE/ASME Trans. Mechatron.
,
22
(
4
), pp.
1695
1704
.
63.
Andrysek
,
J.
,
Naumann
,
S.
, and
Cleghorn
,
W. L.
,
2004
, “
Design Characteristics of Pediatric Prosthetic Knees
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
4
), pp.
369
378
.
64.
Andrysek
,
J.
,
Naumann
,
S.
, and
Cleghorn
,
W. L.
,
2005
, “
Design and Quantitative Evaluation of a Stance-Phase Controlled Prosthetic Knee Joint for Children
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
13
(
4
), pp.
437
443
.
65.
Maryniak
,
A.
,
Laschowski
,
B.
, and
Andrysek
,
A.
,
2018
, “
Technical Overview of Osseointegrated Transfemoral Prostheses: Orthopedic Surgery and Implant Design Centered
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
1
(
2
), p.
020801
.
66.
Khademi
,
G.
,
Mohammadi
,
H.
,
Richter
,
H.
, and
Simon
,
D.
,
2018
, “
Optimal Mixed Tracking/Impedance Control With Application to Transfemoral Prostheses With Energy Regeneration
,”
IEEE Trans. Biomed. Eng.
,
65
(
4
), pp.
894
910
.
67.
Khalaf
,
P.
, and
Richter
,
H.
,
2016
, “
Parametric Optimization of Stored Energy in Robots With Regenerative Drive Systems
,”
Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics
,
Banff, Canada
,
July 12–15
, pp.
1424
1429
.
68.
Warner
,
H. E.
,
2015
, “
Optimal Design and Control of a Lower-Limb Prosthesis With Energy Regeneration
,”
MS thesis
,
Department of Mechanical Engineering, Cleveland State University
,
OH
.
69.
Razavian
,
R.
,
Azad
,
N. L.
, and
McPhee
,
J.
,
2012
, “
On Real-Time Optimal Control of a Series Hybrid Electric Vehicle With an Ultra-Capacitor
,”
Proceedings of the American Control Conference
,
Montreal, Canada
,
June 27–29
, pp.
547
552
.
70.
Ekelem
,
A.
,
Bastas
,
G.
,
Durrough
,
C. M.
, and
Goldfarb
,
M.
,
2018
, “
Variable Geometry Stair Ascent and Descent Controller for a Powered Lower Limb Exoskeleton
,”
ASME J. Med. Devices
,
12
(
3
), p.
031009
.
71.
Farris
,
R. J.
,
Quintero
,
H. A.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Design of a Joint-Coupled Orthosis for FES-Aided Gait
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics
,
Kyoto, Japan
,
June 23–26
, pp.
246
252
.
72.
Farris
,
R. J.
,
Quintero
,
H. A.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Design and Simulation of a Joint-Coupled Orthosis for Regulating FES-Aided Gait
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
1916
1922
.
73.
Farris
,
R. J.
, and
Goldfarb
,
M.
,
2011
, “
Design of a Multidisc Electromechanical Brake
,”
IEEE/ASME Trans. Mechatron.
,
16
(
6
), pp.
985
993
.
74.
Farris
,
R. J.
,
Quintero
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
6
), pp.
652
659
.
75.
Martinez
,
A.
,
Lawson
,
B.
, and
Goldfarb
,
M.
,
2018
, “
A Controller for Guiding Leg Movement During Overground Walking With a Lower Limb Exoskeleton
,”
IEEE Trans. Rob.
,
34
(
1
), pp.
183
193
.
76.
Murray
,
S.
, and
Goldfarb
,
M.
,
2012
, “
Towards the Use of a Lower Limb Exoskeleton for Locomotion Assistance in Individuals With Neuromuscular Locomotor Deficits
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
San Diego, CA
,
Aug. 28–Sept. 1
, pp.
1912
1915
.
77.
Murray
,
S. A.
,
Ha
,
K. H.
, and
Goldfarb
,
M.
,
2014
, “
An Assistive Controller for a Lower-Limb Exoskeleton for Rehabilitation After Stroke, and Preliminary Assessment Thereof
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology
,
Chicago, IL
,
Aug. 26–30
, pp.
4083
4086
.
78.
Quintero
,
H. A.
,
Farris
,
R. J.
, and
Goldfarb
,
M.
,
2011
, “
Control and Implementation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
, pp.
1
6
.
79.
Quintero
,
H. A.
,
Farris
,
R. J.
, and
Goldfarb
,
M.
,
2012
, “
A Method for the Autonomous Control of Lower Limb Exoskeletons for Persons With Paraplegia
,”
ASME J. Med. Devices
,
6
(
4
), p.
041003
.
80.
Khademi
,
G.
,
Richter
,
H.
, and
Simon
,
D.
,
2016
, “
Multi-Objective Optimization of Tracking/Impedance Control for a Prosthetic Leg With Energy Regeneration
,”
Proceedings of the IEEE Conference on Decision and Control
,
Las Vegas, NV
,
Dec. 12–14
, pp.
5322
5327
.
81.
Jeffers
,
J. R.
, and
Grabowski
,
A. M.
,
2017
, “
Individual Leg and Joint Work During Sloped Walking for People With a Transtibial Amputation Using Passive and Powered Prostheses
,”
Front. Rob. AI
,
4
, p.
72
.
82.
McFadyen
,
B. J.
, and
Winter
,
D. A.
,
1988
, “
An Integrated Biomechanical Analysis of Normal Stair Ascent and Descent
,”
J. Biomech.
,
21
(
9
), pp.
733
744
.
83.
Seok
,
S.
,
Wang
,
A.
,
Otten
,
D.
, and
Kim
,
S.
,
2012
, “
Actuator Design for High Force Proprioceptive Control in Fast Legged Locomotion
,”
Proceedings of the IEEE International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
,
Oct. 7–12
, pp.
1970
1975
.
84.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2012
, “
Design Principles for Highly Efficient Quadrupeds and Implementation on the MIT Cheetah Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
3307
3312
.
85.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Hyun
,
D. J.
,
Lee
,
J.
,
Otten
,
D. M.
,
Lang
,
J. H.
, and
Kim
,
S.
,
2015
, “
Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1117
1129
.
86.
Wang
,
A.
, and
Kim
,
S.
,
2015
, “
Directional Efficiency in Geared Transmissions: Characterization of Backdrivability Towards Improved Proprioceptive Control
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
1055
1062
.
87.
Wensing
,
P. M.
,
Wang
,
A.
,
Seok
,
S.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2017
, “
Proprioceptive Actuator Design in the MIT Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
509
522
.
88.
Azocar
,
A. F.
,
Mooney
,
L. M.
,
Hargrove
,
L. J.
, and
Rouse
,
E. J.
,
2018
, “
Design and Characterization of an Open-Source Robotic Leg Prosthesis
,”
Proceedings of the IEEE International Conference on Biomedical Robotics and Biomechatronics
,
Enschede, Netherlands
,
Aug. 26–29
, pp.
111
118
.
You do not currently have access to this content.