The soft grippers driven by pneumatics have an advantage of effectively lifting soft materials and heavier objects with clean air. They provide multiplanar compliant stability when compared with standard claw-like grippers because of the larger contact area. Such grippers can work on objects with a greater surface area than the gripper itself. However, until now, to enhance the gripping on heavier objects, multiple suction cups are used, which involve tubing and a vacuum pump for each individual cup, which ultimately makes the setup bulky and immovable. Furthermore, using a bigger suction gripper requires bigger tubing and higher negative pressure. To tackle this limitation, we are introducing layer-jamming suction grippers with kirigami pattern for stiffness tuning. The kirigami-patterned base and sheets make a channel from the air tubing to each hole that acts as multiple suction cups. The sheets incorporated within the suction cups, working as layer-jamming, control the stiffness of the prototype. Results highlight that the gripper has the capability of lifting 200 times its own weight with a planar surface and has a strength and durability to withstand a maximum force of 87 N. One important characteristic of the gripper is its adaptability to the curved surfaces, which has an enhanced grasp and is able to lift 154 times its own weight. The ease of fabrication, low cost, and higher lifting capabilities open up a wide area of opportunities to see the advancements in technologies with the suction grippers.

References

References
1.
Dubey
,
V. N.
, and
Dai
,
J. S.
,
2006
, “
A Packaging Robot for Complex Cartons
,”
Ind. Robot. Int. J.
,
33
(
2
), pp.
82
87
.
2.
Prituja
,
A.
, and
Ren
,
H.
,
2017
, “
Lego Exoskeleton: An Educational Tool to Design Rehabilitation Device
,”
2017 IEEE International Conference on Real-time Computing and Robotics (RCAR)
, IEEE, pp.
421
426
.
3.
Homberg
,
B. S.
,
Katzschmann
,
R. K.
,
Dogar
,
M. R.
, and
Rus
,
D.
,
2015
, “
Haptic Identification of Objects Using a Modular Soft Robotic Gripper
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, IEEE,
NY
, pp.
1698
1705
.
4.
Dorsam
,
T.
,
Fatikow
,
S.
, and
Streit
,
I.
,
1994
, “
Fuzzy-Based Grasp-Force-Adaptation for Multifingered Robot Hands
,”
Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference (IEEE World Congress on Computational Intelligence)
,
Orlando, FL
,
June 26–29
, IEEE, NY, pp.
1468
1471
.
5.
Galloway
,
K. C.
,
Becker
,
K. P.
,
Phillips
,
B.
,
Kirby
,
J.
,
Licht
,
S.
,
Tchernov
,
D.
,
Wood
,
R. J.
, and
Gruber
,
D. F.
,
2016
, “
Soft Robotic Grippers for Biological Sampling on Deep Reefs
,”
Soft Robot.
,
3
(
1
), pp.
23
33
.
6.
Banerjee
,
H.
, and
Ren
,
H.
,
2017
, “
Optimizing Double-Network Hydrogel for Biomedical Soft Robots
,”
Soft Robot.
,
4
(
3
), pp.
191
201
.
7.
Ciocarlie
,
M.
,
Hicks
,
F. M.
, and
Stanford
,
S.
,
2013
, “
Kinetic and Dimensional Optimization for a Tendon-Driven Gripper
,”
2013 IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
,
May 6–10
, IEEE, NY, pp.
2751
2758
.
8.
Amend
,
J. R.
,
Brown
,
E.
,
Rodenberg
,
N.
,
Jaeger
,
H. M.
, and
Lipson
,
H.
,
2012
, “
A Positive Pressure Universal Gripper Based on the Jamming of Granular Material
,”
IEEE. Trans. Robot.
,
28
(
2
), pp.
341
350
.
9.
Bamotra
,
A.
,
Walia
,
P.
,
Prituja
,
A.
, and
Ren
,
H.
, “
Fabrication and Characterization of Novel Soft Compliant Robotic End-Effectors With Negative Pressure and Mechanical Advantages
,”
2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM)
, IEEE, NY, pp.
369
374
.
10.
Yoshida
,
Y.
, and
Ma
,
S.
,
2010
, “
Design of a Wall-Climbing Robot With Passive Suction Cups
,”
2010 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Tianjin, China
,
Dec. 18–22
, IEEE, NY, pp.
1513
1518
.
11.
Autumn
,
K.
,
Dittmore
,
A.
,
Santos
,
D.
,
Spenko
,
M.
, and
Cutkosky
,
M.
,
2006
, “
Frictional Adhesion: A New Angle on Gecko Attachment
,”
J. Exp. Biol.
,
209
(
18
), pp.
3569
3579
.
12.
Ou
,
J.
,
Yao
,
L.
,
Tauber
,
D.
,
Steimle
,
J.
,
Niiyama
,
R.
, and
Ishii
,
H.
,
2014
, “
Jamsheets: Thin Interfaces With Tunable Stiffness Enabled by Layer Jamming
,”
Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction
,
Munich, Germany
,
February 16–19
, ACM, New York, NY, pp.
65
72
.
13.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
J.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
,
Lipson
,
H.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
Proc. Natl. Acad. Sci.
,
107
(
44
), pp.
18809
18814
.
14.
Kim
,
Y.-J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2013
, “
A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery
,”
IEEE. Trans. Robot.
,
29
(
4
), pp.
1031
1042
.
15.
Follador
,
M.
,
Tramacere
,
F.
, and
Mazzolai
,
B.
,
2014
, “
Dielectric Elastomer Actuators for Octopus Inspired Suction Cups
,”
Bioinspir. Biomim.
,
9
(
4
),
046002
.
16.
Hu
,
B.
, and
Yu
,
H.
,
2018
, “
Optimal Design and Simulation of a Microsuction Cup Integrated With a Valveless Piezoelectric Pump for Robotics
,”
Shock Vib.
,
2018
, p.
1
.
17.
Tadesse
,
M. G.
,
Dumitrescu
,
D.
,
Loghin
,
C.
,
Chen
,
Y.
,
Wang
,
L.
, and
Nierstrasz
,
V.
,
2018
, “
3d Printing of Ninjaflex Filament Onto Pedot: Pss-Coated Textile Fabrics For Electroluminescence Applications
,”
J. Electron. Mater.
,
47
(
3
), pp.
2082
2092
.
You do not currently have access to this content.