PUFFER (“pop-up flat-folding explorer robot”) is an expendable, two-wheeled NASA/JPL rover that is meant to explore the less-accessible regions of Mars. This paper presents the UC Berkeley prototype of PUFFER that was used to inform the mechanical design of the folding chassis for the ensuing NASA/JPL version. PUFFER is so named because it can fold itself to fit into tight spaces; its chassis consists of a 3-D linkage that can vary the sprawl angle of its wheels. This ability to sprawl, besides letting multiple PUFFERs fit into a parent rover, improves PUFFER’s slope-climbing ability by allowing it to lower its center of mass. To further improve slope climbing, each wheel is fitted out with nitinol brushes that serve to enhance ground traction. Together, these two features allow the Berkeley prototype of PUFFER to climb 47 deg rock inclines that have a surface roughness of about half its folded height. Other qualities of PUFFER are that it has a collapsible tail, is able to flip itself over, and requires only three actuators.

References

1.
Karras
,
J. T.
,
Fuller
,
C. L.
,
Carpenter
,
K. C.
,
Buscicchio
,
A.
,
McKeeby
,
D.
,
Norman
,
C. J.
,
Parcheta
,
C. E.
,
Davydychev
,
I.
, and
Fearing
,
R. S.
,
2017
, “
Pop-up Mars Rover With Textile-Enhanced Rigid-Flex PCB Body
,”
IEEE International Conference on Robotics and Automation
,
Singapore
.
2.
Rybski
,
P. E.
,
Papanikolopoulos
,
N. P.
,
Stoeter
,
S. A.
,
Krantz
,
D. G.
,
Yesin
,
K. B.
,
Gini
,
M.
,
Voyles
,
R.
,
Hougen
,
D. F.
,
Nelson
,
B.
, and
Erickson
,
M. D.
,
2000
, “
Enlisting Rangers and Scouts for Reconnaissance and Survelliance
,”
IEEE Robot. Autom. Mag.
,
7
(
4
), pp.
14
24
.
3.
Drenner
,
A.
,
Burt
,
I.
,
Dahlin
,
T.
,
Kratochvil
,
B.
,
McMillen
,
C.
,
Nelson
,
B.
,
Papanikolopoulos
,
N.
,
Rybski
,
P. E.
,
Stubbs
,
K.
,
Waletzko
,
D.
, and
Yesin
,
K. B.
,
2002
, “
Mobility Enhancements to the Scout Robot Platform
,”
IEEE International Conference on Robotics and Automation
,
Washington, DC
.
4.
Spenko
,
M. J.
,
Haynes
,
G. C.
,
Sanders
,
J. A.
,
Cutkosky
,
M. R.
, and
Rizzi
,
A. A.
,
2008
, “
Biologically Inspired Climbing With a Hexapedal Robot
,”
J. Field Robot.
25
(
4
), pp.
223
242
.
5.
Zarrouk
,
D.
,
Pullin
,
A.
,
Kohut
,
N.
, and
Fearing
,
R. S.
,
2013
, “
STAR, A Sprawl Tuned Autonomous Robot
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
, pp.
20
25
.
6.
Wood
,
R. J.
,
Avadhanula
,
S.
,
Sahai
,
R.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
Microbot Design Using Fiber Reinforced Composites
,”
ASME J. Mech. Design
,
130
(
5
), p.
052304
.
7.
Hoover
,
A. M.
, and
Fearing
,
R. S.
,
2008
, “
Fast Scale Prototyping for Folded Millirobots
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
, pp.
886
892
.
8.
Lee
,
D. Y.
,
Kim
,
S. R.
,
Kim
,
J. S.
,
Park
,
J. J.
, and
Cho
,
K. J.
,
2017
, “
Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure
,”
Soft Robot.
4
(
2
), pp.
163
180
.
9.
Asbeck
,
A. T.
,
Kim
,
S.
,
Cutkosky
,
M. R.
,
Provancher
,
W. R.
, and
Lanzetta
,
M.
,
2006
, “
Scaling Hard Vertical Surfaces With Compliant Microspine Arrays
,”
Int. J. Rob. Res.
25
(
12
), pp.
1165
1179
.
10.
Daltorio
,
K. A.
,
Wei
,
T. E.
,
Horchler
,
A. D.
,
Southard
,
L.
,
Wile
,
G. D.
,
Quinn
,
R. D.
, and
Ritzmann
,
R. E.
,
2009
, “
Mini-whegs™ Climbs Steep Surfaces Using Insect-Inspired Attachment Mechanisms
,”
Int. J. Rob. Res.
28
(
2
), pp.
285
302
.
11.
Carpenter
,
K.
,
Wiltsie
,
N.
, and
Parness
,
A.
,
2016
, “
Rotary Microspine Rough Surface Mobility
,”
IEEE ASME Trans. Mechatron.
,
21
(
5
), pp.
2378
2390
.
12.
Aksak
,
B.
,
Murphy
,
M. P.
, and
Sitti
,
M.
,
2007
, “
Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays
,”
Langmuir
,
23
(
6
), pp.
3322
3332
.
13.
Kim
,
S.
,
Spenko
,
M.
,
Trujillo
,
S.
,
Heyneman
,
B.
,
Santos
,
D.
, and
Cutkosky
,
M. R.
,
2008
, “
Smooth Vertical Surface Climbing With Directional Adhesion
,”
IEEE Trans. Robot.
24
(
1
), pp.
65
74
.
14.
Birkmeyer
,
P.
,
Gillies
,
A. G.
, and
Fearing
,
R. S.
,
2012
, “
Dynamic Climbing of Near-Vertical Smooth Surfaces
,”
IEEE International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
.
15.
Birkmeyer
,
P.
,
Peterson
,
K.
, and
Fearing
,
R. S.
,
2009
, “
DASH: A Dynamic 16g Hexapedal Robot
,”
IEEE International Conference on Intelligent Robots and Systems
,
Kobe, Japan
, pp.
2683
2689
.
16.
Stoeter
,
S. A.
, and
Papanikolopoulos
,
N.
,
2006
, “
Kinematic Motion Model for Jumping Scout Robots
,”
IEEE Trans. Robot.
,
22
(
2
), pp.
398
403
.
17.
Jiang
,
H.
,
Wang
,
S.
, and
Cutkosky
,
M. R.
,
2018
, “
Stochastic Models of Compliant Spine Arrays for Rough Surface Grasping
,”
Int. J. Rob. Res.
,
37
(
7
), pp.
669
687
.
18.
Ting
,
L. H.
,
Blickhan
,
R.
, and
Full
,
R. J.
,
1994
, “
Dynamic and Static Stability in Hexapedal Runners
,” ,
197
, pp.
251
269
.
19.
Morrey
,
J. M.
,
Lambrecht
,
B.
,
Horchler
,
A. D.
,
Ritzmann
,
R. E.
, and
Quinn
,
R. D.
,
2003
, “
Highly Mobile and Robust Small Quadruped Robots
,”
IEEE International Conference on Intelligent Robots and Systems
,
Las Vegas, NE
, pp.
82
87
.
20.
Murphy
,
M. P.
,
Kute
,
C.
,
Mengüç
,
Y.
, and
Sitti
,
M.
,
2011
, “
Waalbot II: Adhesion Recovery and Improved Performance of a Climbing Robot Using Fibrillar Adhesives
,”
Int. J. Rob. Res.
,
30
(
1
), pp.
118
133
.
You do not currently have access to this content.