In the field of milli-robots, several methods of constructing robots by laminating materials and then folding have been developed. Among these methods, smart composite microstructures (SCM) is widely used for making lightweight small mobile robots. However, in the case of a robot manufactured by the SCM method, due to flexible and easily deformable links and joints, it is often difficult to obtain proper kinematic movement due to deformation of the structure when a heavy load is applied. In this paper, studies on the mechanism design and manufacturing were carried out to increase the load capacity of robots manufactured by SCM. First, we modified the kinematics of the robot to reduce off-axis loading on flexure joints by using a planar 6 bar leg mechanism, which was fabricated using a new multilayer SCM process. Second, the fabrication process is improved to reduce peeling of laminate structures by introducing integrated rivets at joints. Finally, alternative materials, such as balsa, are used. To verify the design and fabrication improvements, we compared the payloads after applying the proposed methods to an existing cockroach robot design. Compared to the previous design, speed with a 50-g payload increased from 7 to 30 cm per second.

References

References
1.
Jayaram
,
K.
,
Mongeau
,
J.
,
Mohapatra
,
A.
,
Birkmeyer
,
P.
,
Fearing
,
R. S.
, and
Full
,
R. J.
,
2018
, “
Transition by Head-On Collision: Mechanically Mediated Manoeuvres in Cockroaches and Small Robots
,”
J. R. Soc. Interface
,
15
(
139
),
20170664
.
2.
Hoover
,
A. M.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
Roach: An Autonomous 2.4 g Crawling Hexapod Robot
”.
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
,
IEEE
,
New York
, pp.
26
33
.
3.
Birkmeyer
,
P.
,
Peterson
,
K.
, and
Fearing
,
R. S.
,
2009
, “
Dash: A Dynamic 16g Hexapedal Robot
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
,
IEEE
,
New York
, pp.
2683
2689
.
4.
Hoover
,
A. M.
,
Burden
,
S.
,
Fu
,
X.
,
Sastry
,
S. S.
, and
Fearing
,
R. S.
,
2010
, “
Bio-inspired Design and Dynamic Maneuverability of a Minimally Actuated Six-Legged Robot
,”
2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Tokyo, Japan
,
Sept. 26–29
,
New York
,
IEEE
, pp.
869
876
.
5.
Fearing
,
R. S.
,
2006
, “
Challenges for Efffective Millirobots
,”
2006 International Symposium on Micro-NanoMechatronics and Human Science
,
IEEE
,
New York
, pp.
1
5
.
6.
Merz
,
R.
,
Prinz
,
F.
,
Ramaswami
,
K.
,
Terk
,
M.
, and
Weiss
,
L.
,
1994
,
Shape Deposition Manufacturing
,
Engineering Design Research Center
.
7.
Weiss
,
L. E.
,
Merz
,
R.
,
Prinz
,
F. B.
,
Neplotnik
,
G.
,
Padmanabhan
,
P.
,
Schultz
,
L.
, and
Ramaswami
,
K.
,
1997
, “
Shape Deposition Manufacturing of Heterogeneous Structures
,”
J. Manuf. Syst.
,
16
(
4
), pp.
239
248
.
8.
Cooper
,
A. G.
,
Kang
,
S.
,
Kietzman
,
J.
,
Prinz
,
F.
,
Lombardi
,
J.
, and
Weiss
,
L.
,
1999
, “
Automated Fabrication of Complex Molded Parts Using Mold Shape Deposition Manufacturing
,”
Mater. Des.
,
20
(
2
), pp.
83
89
.
9.
Bailey
,
S. A.
,
Cham
,
J. G.
,
Cutkosky
,
M. R.
, and
Full
,
R. J.
,
2000
,
Biomimetic Robotic Mechanisms via Shape Deposition Manufacturing
,
Springer
,
London
, pp.
403
410
.
10.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2013
, “
Design Principles for Highly Efficient Quadrupeds and Implementation on the MIT Cheetah Robot
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
,
New York
, pp.
3307
3312
.
11.
Haldane
,
D. W.
,
Casarez
,
C. S.
,
Karras
,
J. T.
,
Lee
,
J.
,
Li
,
C.
,
Pullin
,
A. O.
,
Schaler
,
E. W.
,
Yun
,
D.
,
Ota
,
H.
,
Fearing
,
R. S.
, and
Javey
,
A.
,
2015
, “
Integrated Manufacture of Exoskeletons and Sensing Structures for Folded Millirobots
,”
J. Mech. Robot.
,
7
(
2
),
21011
.
12.
Hoover
,
A. M.
, and
Fearing
,
R. S.
,
2008
, “
Fast Scale Prototyping for Folded Millirobots
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
,
IEEE
,
New York
, pp.
886
892
.
13.
Cho
,
K.-J.
,
Koh
,
J.-S.
,
Kim
,
S.
,
Chu
,
W.-S.
,
Hong
,
Y.
, and
Ahn
,
S.-H.
,
2009
, “
Review of Manufacturing Processes for Soft Biomimetic Robots
,”
Int. J. Precision Eng. Manuf.
,
10
(
3
), pp.
171
181
.
14.
Li
,
C.
,
Hoover
,
A. M.
,
Birkmeyer
,
P.
,
Umbanhowar
,
P. B.
,
Fearing
,
R. S.
, and
Goldman
,
D. I.
,
2010
,
Systematic Study of the Performance of Small Robots on Controlled Laboratory Substrates
,”
Georgia Institute of Technology
.
15.
Kohut
,
N. J.
,
Pullin
,
A. O.
,
Haldane
,
D. W.
,
Zarrouk
,
D.
, and
Fearing
,
R. S.
,
2013
, “
Precise Dynamic Turning of a 10 cm Legged Robot on a Low Friction Surface Using a Tail
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
,
New York
, pp.
3299
3306
.
16.
Kohut
,
N. J.
,
Zarrouk
,
D.
,
Peterson
,
K. C.
, and
Fearing
,
R. S.
,
2013
, “
Aerodynamic Steering of a 10 cm High-Speed Running Robot
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
,
IEEE
,
New York
, pp.
5593
5599
.
17.
Haldane
,
D. W.
,
Peterson
,
K. C.
,
Bermudez
,
F. L. G.
, and
Fearing
,
R. S.
,
2013
, “
Animal-Inspired Design and Aerodynamic Stabilization of a Hexapedal Millirobot
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
, pp.
3279
3286
.
18.
Yun
,
D.
, and
Fearing
,
R. S.
,
2015
, “
VLR: Cockroach Millirobot With Load Decoupling Structure
,”
2015 IEEE International Conference on Advanced Intelligent Mechatronics
,
Busan, South Korea
,
July 7–11
,
IEEE
,
New York
, pp.
127
132
.
19.
Faal
,
S. G.
,
Chen
,
F.
,
Tao
,
W.
,
Agheli
,
M.
,
Tasdighikalat
,
S.
, and
Onal
,
C. D.
,
2016
, “
Hierarchical Kinematic Design of Foldable Hexapedal Locomotion Platforms
,”
J. Mech. Robot.
,
8
(
1
),
11005
.
20.
Schulz
,
A.
,
Sung
,
C.
,
Spielberg
,
A.
,
Zhao
,
W.
,
Cheng
,
R.
,
Grinspun
,
E.
,
Rus
,
D.
, and
Matusik
,
W.
,
2017
, “
Interactive Robogami: An End-to-End System for Design of Robots With Ground Locomotion
,”
Int. J. Rob. Res.
,
36
(
10
), pp.
1131
1147
.
21.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
22.
Weston-Dawkes
,
W. P.
,
Ong
,
A. C.
,
Majit
,
M. R. A.
,
Joseph
,
F.
, and
Tolley
,
M. T.
,
2017
, “
Towards Rapid Mechanical Customization of cm-Scale Self-Folding Agents
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, BC, Canada
,
Sept. 24–28
,
IEEE
,
New York
, pp.
24
28
.
23.
Fitzner
,
I.
,
Sun
,
Y.
,
Sachdeva
,
V.
, and
Revzen
,
S.
,
2017
, “
Rapidly Prototyping Robots: Using Plates and Reinforced Flexures
,”
IEEE Robot. Automation Mag.
,
24
(
1
), pp.
41
47
.
24.
Hoover
,
A. M.
, and
Fearing
,
R. S.
,
2009
, “
Analysis of Off-Axis Performance of Compliant Mechanisms With Applications to Mobile Millirobot Design
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
,
IEEE
,
New York
, pp.
2770
2776
.
25.
Amin
,
S.
, and
Amin
,
M.
,
2011
, “
Thermoplastic Elastomeric (TPE) Materials and Their Use in Outdoor Electrical Insulation
,”
Rev. Adv. Mater. Sci.
,
29
, pp.
15
30
.
26.
Nemsick
,
B. E.
,
Buchan
,
A. D.
,
Nagabandi
,
A.
,
Fearing
,
R. S.
, and
Zakhor
,
A.
,
2017
, “
Cooperative Inchworm Localization With a Low Cost Team
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore, Singapore
,
May 29–June 3
,
IEEE
,
New York
, pp.
6323
6330
.
You do not currently have access to this content.