Accurate and robust force control is still a great challenge for robot–environment contact applications, such as in situ repair, polishing, and assembly. To tackle this problem, this paper proposes a force control joint with a parallel configuration, including two identical four-bar linkages driven by linear springs to push up the output end of the joint, and a parallel-connected pneumatic artificial muscle (PAM) to pull down its output end. In the new design, the link length of the linkages will be optimized to make the difference between the profile of the linkage and that of PAM constant within the limits of the joint given the force–displacement profile of PAM at a certain level of its input pressure. Furthermore, PAM's nonlinear hysteresis effect, which is believed to limit the accuracy of the joint's force control, will be represented by a new dynamics model that is to be developed from the classical Bouc–Wen (BW) hysteresis model. Simulation tests are then conducted to reveal that the adoption of the PAM hysteresis model yields improved accuracy of force control, and a series of curve trajectory tracking experiments are performed on a six-joint universal industrial robot to verify that the parallel force control joint is capable to enhance force control accuracy for robot contact applications.

References

References
1.
Olarra
,
A.
,
Axinte
,
D.
, and
Kortaberria
,
G.
,
2018
, “
Geometrical Calibration and Uncertainty Estimation Methodology for a Novel Self-Propelled Miniature Robotic Machine Tool
,”
Robot. Comput. Integr. Manuf.
,
49
, pp.
204
214
.
2.
Allen
,
J.
,
Axinte
,
D.
,
Roberts
,
P.
, and
Anderson
,
R.
,
2010
, “
A Review of Recent Developments in the Design of Special-Purpose Machine Tools With a View to Identification of Solutions for Portable In Situ Machining Systems
,”
Int. J. Adv. Manuf. Technol.
,
50
(
9–12
), pp.
843
857
.
3.
Raibert
,
M. H.
, and
Craig
,
J. J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Syst. Meas. Contr.
,
103
(
2
), pp.
126
133
.
4.
Balachandran
,
R.
,
Jorda
,
M.
,
Artigas
,
J.
,
Ryu
,
J.
, and
Khatib
,
O.
,
2017
, “
Passivity-Based Stability in Explicit Force Control of Robots
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore, Singapore
,
May 29–Jun. 3
, pp.
386
393
.
5.
Zhang
,
X.
,
Chen
,
H.
, and
Yang
,
N.
,
2017
, “
A Structure and Control Design of Constant Force Polishing End Actuator Based on Polishing Robot
,”
IEEE International Conference on Information and Automation (ICIA)
,
Macau, China
,
Jul. 18–20
.
6.
Udai
,
A. D.
,
Hayat
,
A. A.
, and
Saha
,
S. K.
,
2014
, “
Parallel Active/Passive Force Control of Industrial Robots With Joint Compliance
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Chicago, IL
,
Sept. 14–18
, pp.
4511
4516
.
7.
Yan
,
L.
,
Mu
,
Z. G.
,
Xu
,
W. F.
, and
Yang
,
B. S.
,
2016
, “
Coordinated Compliance Control of Dual-Arm Robot for Payload Manipulation: Master-Slave and Shared Force Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
2697
2702
.
8.
Rice
,
J. J.
, and
Schimmel
,
J. M.
,
2018
, “
Passive Compliance Control of Redundant Serial Manipulators
,”
J. Mech. Robot.
,
10
(
4
), p.
044507
.
9.
Neville
,
H.
,
1985
, “
Impedance Control: An Approach to Manipulation: Parts I–III
,”
ASME J. Dyn. Syst.
,
107
(
1
), pp.
304
313
.
10.
Lutscher
,
E.
,
Dean-León
,
E. C.
, and
Cheng
,
G.
,
2017
, “
Hierarchical Force and Positioning Task Specification for Indirect Force Controlled Robots
,”
IEEE Trans. Robot.
,
34
(
1
), pp.
280
286
.
11.
Polverini
,
M. P.
,
Nicolis
,
D.
,
Zanchettin
,
A. M.
, and
Rocco
,
P.
,
2017
, “
Robust Set Invariance for Implicit Robot Force Control in Presence of Contact Model Uncertainty
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC
,
Sept. 24–28
, pp.
6393
6399
.
12.
Hong
,
L.
,
2008
, “
Multisensory Five-Finger Dexterous Hand: The DLR/HIT Hand II
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Nice, France
,
Sept. 22–26
, pp.
3692
3697
.
13.
Shigeki
,
S.
,
2005
, “
Design of Humanoid Robot for Human–Robot Interaction—Waseda Robots: Wendy and Wamoeba
,”
IEEE International Conference on Robotics and Biomimetics-Robio (ROBIO)
,
Shatin, China
,
Jul. 5–9
, pp.
16
19
.
14.
Reynolds
,
D. B.
, and
Repperger
,
D. W.
,
2003
, “
Modeling the Dynamic Characteristics of Pneumatic Muscle
,”
Ann. Biomed. Eng.
,
31
(
3
), pp.
310
317
.
15.
Elobaid
,
Y. M. T.
,
Huang
,
J.
, and
Wang
,
Y. J.
,
2014
, “
Nonlinear Disturbance Observer Based Robust Tracking Control of Pneumatic Muscle
,”
Math. Probl. Eng.
,
2014
(
2
), pp.
1
8
.
16.
Yamamoto
,
Y.
,
Matsunaga
,
N.
, and
Okajima
,
H.
,
2017
, “
Robust Variable Stiffness Control of McKibben Type Pneumatic Artificial Muscle Arm by Using Multiple Model Error Compensators
,”
International Conference on Control, Automation and Systems (ICCAS)
,
Jeju, South Korea
,
Oct. 18–21
, pp.
957
962
.
17.
Kaneko
,
T.
,
Sekiya
,
M.
,
Ogata
,
K.
,
Sakaino
,
S.
, and
Tsuji
,
T.
2016
, “
Force Control of a Jumping Musculoskeletal Robot With Pneumatic Artificial Muscles
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
5813
5818
.
18.
Tatsuya
,
T.
,
Noda
,
T.
, and
Morimoto
,
J.
,
2014
, “
Optimal Control Approach for Pneumatic Artificial Muscle With Using Pressure-Force Conversion Model
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–Jun. 7
, pp.
4792
4797
.
19.
Tomori
,
H.
,
Nagai
,
S.
,
Majima
,
T.
, and
Teruya
,
N.
,
2013
, “
Variable Impedance Control With an Artificial Muscle Manipulator Using Instantaneous Force and MR Brake
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Nov. 3–7
, pp.
5396
5403
.
20.
Dirven
,
S.
, and
Mcdaid
,
A.
,
2017
, “
A Systematic Design Strategy for Antagonistic Joints Actuated by Artificial Muscles
,”
IEEE ASME Trans. Mechatron.
,
22
(
6
), pp.
2524
2531
.
21.
Park
,
Y.
,
Paine
,
N.
, and
Oh
,
S.
,
2017
, “
Development of Force Observer in Series Elastic Actuator for Dynamic Control
,”
IEEE Trans. Ind. Electron.
,
65
(
3
), pp.
2398
2407
.
22.
Cullinan
,
M. F.
,
Bourke
,
E.
,
Kelly
,
K.
, and
McGinn
,
C.
,
2017
, “
A McKibben Type Sleeve Pneumatic Muscle and Integrated Mechanism for Improved Stroke Length
,”
ASME J. Mech. Robot.
,
9
(
1
), p.
011013
.
23.
Minh
,
T. V.
,
Kamers
,
B.
,
Ramon
,
H.
, and
Van Brussel
,
H.
,
2012
, “
Modeling and Control of a Pneumatic Artificial Muscle Manipulator Joint—Part I: Modeling of a Pneumatic Artificial Muscle Manipulator Joint With Accounting for Creep Effect
,”
Mechatronics
,
22
(
7
), pp.
923
933
.
24.
Minh
,
T. V.
,
Tjahjowidodo
,
T.
,
Ramon
,
H.
, and
Van Brussel
,
H.
,
2010
, “
Cascade Position Control of a Single Pneumatic Artificial Muscle–Mass System With Hysteresis Compensation
,”
Mechatronics
,
20
(
3
), pp.
402
414
.
25.
Chou
,
C. P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Robot. Autom.
,
12
(
1
), pp.
90
102
.
26.
Klute
,
G. K.
, and
Hannaford
,
B.
,
2000
, “
Accounting for Elastic Energy Storage in McKibben Artificial Muscle Actuators
,”
ASME J. Dyn. Syst.
,
122
(
2
), pp.
386
388
.
27.
Sugimoto
,
Y.
,
Naniwa
,
K.
, and
Osuka
,
K.
,
2010
, “
Stability Analysis of Robot Motions Driven by Mckibben Pneumatic Actuator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
3049
3054
.
28.
Davis
,
S.
, and
Caldwell
,
D. G.
,
2006
, “
Braid Effects on Contractile Range and Friction Modeling in Pneumatic Muscle Actuators
,”
Int. J. Robot. Res.
,
25
(
4
), pp.
359
369
.
29.
Pietrala
,
D.
,
2017
, “
The Characteristics of a Pneumatic Muscle
,”
EPJ Web Conf.
,
143
, pp.
1
6
.
30.
Takosoglu
,
J. E.
,
Laski
,
P. A.
,
Blasiak
,
S.
,
Bracha
,
G.
, and
Pietrala
,
D.
,
2016
, “
Determining the Static Characteristics of Pneumatic Muscles
,”
Meas. Control
,
49
(
2
), pp.
62
71
.
31.
Takada
,
S.
,
Kaneko
,
O.
,
Nakamura
,
T.
, and
Yamamoto
,
S.
,
2014
Data-Driven Tuning of Nonlinear Internal Model Controllers for Pneumatic Artificial Muscles
,”
Australian Control Conference (AUCC)
,
Canberra, ACT, Australia
,
Nov. 17–18
, pp.
13
18
.
32.
He
,
C.
,
Wang
,
X.
, and
Tian
,
M.
,
2017
, “
Experimental Study on the Dynamic Displacement Characteristics of Double Parallel Pneumatic Artificial Muscles
,”
International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
,
Auckland, New Zealand
,
Nov. 21–23
, pp.
1
5
.
33.
Wickramatunge
,
K. C.
, and
Leephakpreeda
,
T.
,
2010
, “
Study on Mechanical Behaviors of Pneumatic Artificial Muscle
,”
Int. J. Eng. Sci.
,
48
(
2
), pp.
188
198
.
34.
Vo-Minh
,
T.
,
Tjahjowidodo
,
T.
,
Ramon
,
H.
, and
Van Brussel
,
H.
,
2011
, “
A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using the Maxwell-Slip Model
,”
IEEE ASME Trans. Mechatron.
,
16
(
1
), pp.
177
186
.
35.
Vo-Minh
,
T.
,
Tjahjowidodo
,
T.
,
Ramon
,
H.
, and
Van Brussel
,
H.
,
2009
, “
Control of a Pneumatic Artificial Muscle (PAM) With Model-Based Hysteresis Compensation
,”
International Conference on Advanced Intelligent Mechatronics (AIM)
,
Singapore, Singapore
,
Jul. 14–17
, pp.
1082
1087
.
36.
Zang
,
X.
,
Liu
,
Y.
,
Heng
,
S.
,
Liu
,
Z.
, and
Zhao
,
J.
,
2017
, “
Position Control of a Single Pneumatic Artificial Muscle With Hysteresis Compensation Based on Modified Prandtl–Ishlinskii Model
,”
Biomed. Mater. Eng.
,
28
(
2
), pp.
131
140
.
37.
Van Damme
,
M.
,
Beyl
,
P.
,
Vanderborght
,
B.
,
Van Ham
,
R.
,
Vanderniepen
,
I.
,
Versluys
,
R.
, and
Lefeber
,
D.
,
2008
, “
Modeling Hysteresis in Pleated Pneumatic Artificial Muscles
,”
IEEE Conference on Robotics, Automation and Mechatronics (RAMECH)
,
Chengdu, China
,
Sept. 21–24
, pp.
471
476
.
38.
Ikhouane
,
F.
, and
Rodellar
,
J.
,
2007
,
Systems With Hysteresis: Analysis, Identification and Control Using the Bouc–Wen Model
,
John Wiley and Sons
,
New York
.
39.
Aschemann
,
H.
, and
Schindele
,
D.
,
2014
, “
Comparison of Model-Based Approaches to the Compensation of Hysteresis in the Force Characteristic of Pneumatic Muscles
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3620
3629
.
40.
Ismail
,
M.
,
Ikhouane
,
F.
, and
Rodellar
,
J.
,
2009
, “
The Hysteresis Bouc–Wen Model, a Survey
,”
Arch. Comput. Method Eng.
,
16
(
2
), pp.
161
188
.
41.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
,
20
(
2
), pp.
15
38
.
You do not currently have access to this content.