The static balancing of mechanical systems is an important issue because it allows one to significantly decrease the size of actuators for equivalent displacements of the end effector. Indeed, the actuators do not have to produce the required input energy to counterbalance the variation of the potential energy of the robot. However, the literature review shows that in many cases the gravity balancing of mechanical systems is carried out by neglecting the masses of auxiliary links associated with the principal mechanism. For many balancing schemes, it is a source of errors.

This paper deals with an improved solution for gravity compensators based on the inverted slider-crank mechanism considering the masses of the coupler and the spring. To achieve this, the torques are determined due to auxiliary links. Subsequently, they are introduced into the balancing equation for minimization of the residual unbalance. Hence, a more accurate balancing of gravity compensators based on the inverted slider-crank mechanism can be achieved. The efficiency of the suggested approach is illustrated by numerical simulations.

References

References
1.
Arakelian
,
V.
, and
Briot
,
S.
2015
,
Balancing of Linkages and Robot Manipulators. Advanced Methods With Illustrative Examples
,
Springer
,
Switzerland
. ISBN: 9783319124896.
2.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Ad. Robot.
,
30
(
2
), pp.
79
96
.
3.
Dunlop
,
G.
, and
Jones
,
T.
1996
, “
Gravity Counter Balancing of Parallel Robot for Antenna Aiming
,”
Proceedings of the Sixth International Symposium on Robotics and Manufacturing (ISRAM), Montpellier
,
France
,
May 27–30
, pp.
153
158
.
4.
Gosselin
,
C.
, and
Wang
,
J.
1998
, “
On the Design of Gravity-Compensated Six-Degree-of-Freedom Parallel Mechanisms
,”
Proceedings of the International Conference on Robotics and Automation (ICRA)
,
Leuven, Belgium
, pp.
2287
2294
.
5.
Wang
,
J.
, and
Gosselin
,
C.
,
1999
, “
Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
34
, pp.
437
452
.
6.
Bayer
,
A.
, and
Merk
,
G.
,
2011
, “
Industrial Robot With a Weight Balancing System
,” EP Patent 2,301,727,
Aug
.
24
.
7.
Gosselin
,
C.
2008
, “
Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms
,”
Smart Devices and Machines for Advanced Manufacturing
,
L.
Wang
, and
J.
Xi
, eds.,
Springer
,
London
, pp.
27
48
.
8.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2000
, “
Static Balancing of Spatial Four-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
35
, pp.
563
592
.
9.
Laliberté
,
T.
,
Gosselin
,
C. M.
, and
Jean
,
M.
,
1999
, “
Static Balancing of 3-DOF Planar Parallel Mechanisms
,”
IEEE/ASME Trans. J. Mechatron.
,
4
(
4
), pp.
363
377
.
10.
Reiner
,
B.
,
Hans-Guenter
,
J.
, and
Otto
,
W.
,
1991
, “
Industrial Robot With Counterbalance Weight Attached by Parallelogram Linkage so That Robot Arm is Always Balanced
,” DE Patent 4,014,003,
Oct.
31
.
11.
Russo
,
A.
,
Sinatra
,
R.
, and
Xi
,
F.
,
2005
, “
Static Balancing of Parallel Robots
,”
Mech. Mach. Theory
,
40
, pp.
191
202
.
12.
Ulrich
,
N.
, and
Kumar
,
V.
1991
, “
Passive Mechanical Gravity Compensation for Robot Manipulators
,”
Proceedings of the International Conference on Robotics and Automation (ICRA)
,
Sacramento, CA
,
Apr. 9–11
, pp.
1536
1541
.
13.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems. Theory, Conception and Design of Statically Balanced Mechanisms
,” Ph.D. thesis,
Delf University of Technology
.
14.
Herder
,
J. L.
,
1998
, “
Design of Spring Force Compensation Systems
,”
Mech. Mach. Theory
,
33
, pp.
151
161
.
15.
Ebert-Uphoff
,
I.
,
Gosselin
,
C. M.
, and
Laliberté
,
T.
,
2000
, “
Static Balancing of Spatial Parallel Mechanisms – Revisited
,”
ASME J. Mech. Des.
,
122
, pp.
43
51
.
16.
Ono
,
Y.
, and
Morita
,
T.
,
2004
, “
An Underactuated Manipulation Method Using a Mechanical Gravity Canceller
,”
J. Robot. Mechatron.
,
106
(
6
), pp.
563
569
.
17.
Perrot
,
Y.
,
2004
, “
Ressort d’équilibrage, pour mécanisme articulé, notamment pour bras de robot
,” FR Patent 2,847,958,
June
4
.
18.
Lin
,
P. Y.
,
Shieh
,
W. B.
, and
Chen
,
D. Z.
,
2010
, “
A Stiffness Matrix Approach for the Design of Statically Balanced Planar Articulated Manipulators
,”
Mech. Mach. Theory
,
45
, pp.
1877
1891
.
19.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2012
, “
Design of Statically Balanced Planar Articulated Manipulator With Spring Suspension
,”
IEEE Trans. Robot.
,
28
(
1
), pp.
12
21
.
20.
Deepak
,
S. D.
, and
Ananthasuresh
,
G. K.
,
2012
, “
Perfect Static Balancing of Linkages by Addition of Springs but not Auxiliary Bodies
,”
ASME J. Mech. Robot.
,
4
, p.
021014
.
21.
Delissen
,
A. T. M.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Design and Optimization of a General Planar Zero Free Length Spring
,”
Mech. Mach. Theory
,
117
, pp.
56
77
.
22.
Ebert-Uphoff
,
I.
, and
Johnson
,
K.
,
2002
, “
Practical Considerations for the Static Balancing of Mechanisms of Parallel Architecture
,”
J. Multi-Body Dyn. Part K
,
216
, pp.
73
85
.
23.
Endo
,
G.
,
Yamada
,
H.
,
Yajima
,
A.
,
Ogata
,
M.
, and
Hirose
,
S.
2010
, “
A Passive Weight Compensation Mechanism With a Non-Circular Pulley and a Spring
,”
Proceedings of the International Conference on Robotics and Automation (ICRA)
,
Anchorage, AK
,
May 3–7
, pp.
3843
3848
.
24.
Cui
,
M.
,
Wang
,
S.
, and
Li
,
J.
2015
, “
Spring Gravity Compensation Using the Noncircular Pulley and Cable for the Less-Spring Design
,”
Proceedings of the 14th IFTOMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
.
25.
Fedorov
,
D.
, and
Birglen
,
L.
,
2018
, “
Differential Noncircular Pulleys for Cable Robots and Static Balancing
,”
ASME J. Mech. Robot.
,
18
, p.
06001
.
26.
Simionescu
,
I.
, and
Ciupitu
,
L.
,
2000
, “
The Static Balancing of the Industrial Arms. Part I: Discrete Balancing
,”
Mech. Mach. Theory
,
35
, pp.
1287
1298
.
27.
Fattah
,
A.
, and
Agrawal
,
S.
2006
, “
Gravity-Balancing of Classes of Industrial Robots
,”
Proceedings of the International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
, pp.
2872
2877
.
28.
Hervé
,
J.
,
1985
, “
Device for Counter-Balancing the Forces Due to Gravity in a Robot Arm
,” Patent FR2565153,
June
12
.
29.
Perreault
,
S.
,
Cardou
,
P.
, and
Gosselin
,
C.
,
2014
, “
Approximate Static Balancing of a Planar Parallel Cable-Driven Mechanism Based on Four-Bar Linkages and Springs
,”
Mech. Mach. Theory
,
79
, pp.
64
79
.
30.
Martini
,
A.
,
Troncossi
,
M.
,
Carricato
,
M.
, and
Rivola
,
A.
,
2015
, “
Static Balancing of a Parallel Kinematics Machine With Linear-Delta Architecture: Theory, Design and Numerical Investigation
,”
Mech. Mach. Theory
,
90
, pp.
128
141
.
31.
Kim
,
H.
, and
Song
,
J.
,
2013
, “
Low-Cost Robot Arm With 3-DOF Counterbalance Mechanism
,”
Proc. ICRA’2013
,
Karisruhe, Germany
,
May 6–10
, pp.
4168
4173
.
32.
Kim
,
H.
,
Min
,
J.
, and
Song
,
J.
,
2016
, “
Multiple-Degree-of-Freedom Counterbalance Robot Arm Based on Slider-Crank Mechanism and Bevel Gear Units
,”
IEEE Trans. Robot.
,
32
(
1
), pp.
230
235
.
33.
Cho
,
C.
,
Lee
,
W.
, and
Kang
,
S.
2011
, “
Design of a Static Balancing Mechanism With Unit Gravity Compensators
,”
Proceedings of the International Conference on Advanced Intelligent Mechatronics
,
San Francisco
, pp.
1857
1862
.
34.
Cho
,
C.
,
Lee
,
W.
,
Lee
,
J.
, and
Kang
,
S.
,
2012
, “
A 2-Dof Gravity Compensator With Bevel Gears
,”
J. Mech. Sci. Technol.
,
26
(
9
), pp.
2913
2919
.
35.
Belyanin
,
P. N.
,
1988
, “
Balanced manipulators
,”
Ed. Mashinostroyenie
,
Moscow
,
263
p.
36.
Fahim
,
A.
, and
Fernandez
,
M.
,
1988
, “
Performance Enhancement of Robot Arms Through Active Counterbalancing
,”
Int. J. Adv. Manuf. Technol.
,
3
(
4
), pp.
63
72
.
37.
Yamamoto
,
R.
,
Hirakawa
,
A.
, and
Horikawa
,
O.
,
2010
, “
Load Balancer With Automatic Lifting Force Compensation
,”
Proc. ABCM Symp. Mechatron.
,
4
, pp.
580
589
.http://abcm.org.br/symposium-series/SSM_Vol4/Section_VI_ROBOTICS/SSM4_VI_02.pdf
38.
Wildenberg
,
F.
,
2002
, “
Compensating System for a Hexapod
,” U.S. Patent No. 6,474,915,
Nov.
5
.
39.
Lacasse
,
M.-A.
,
Lachance
,
G.
,
Boisclair
,
J.
,
Ouellet
,
J.
, and
Gosselin
,
C.
2013
, “
On the Design of a Statically Balanced Serial Robot Using Remote Counterweights
,”
Proceedings of the International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
4174
4179
.
40.
Baradat
,
C.
,
Arakelian
,
V.
,
Briot
,
S.
, and
Guegan
,
S.
,
2008
, “
Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators
,”
ASME J. Mech. Des.
,
130
(
7
), p. 072305.
41.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
, and
Wang
,
X.
,
2016
, “
Passive and Active Gravity Compensation of Horizontally-Mounted 3-RPS Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
104
, pp.
190
201
.
42.
Boisclair
,
J.
,
Richard
,
P.-L.
,
Liberté
,
T.
, and
Gosselin
,
C.
,
2017
, “
Gravity Compensation of Robotic Manipulators Using Cylindrical Halbach Arrays
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
457
464
.
43.
Riele te
,
F. L. S.
,
Hekman
,
E. E. G.
, and
Herder
,
J.
2004
, “
Planar and Spatial Gravity Balancing With Normal Springs
,”
Proceedings of the ASME Design Engineering Technical Conferences
,
Sept. 28–Oct. 2
,
Salt Lake City, UT
, DETC2004-57164.
44.
Riele te
,
F. L. S.
, and
Herder
,
J.
2001
, “
Perfect Static Balance With Normal Springs
,”
Proceedings of the ASME Design Engineering Technical Conferences
,
Sept. 9–12
,
Pittsburg, PA
, DETC2001-DAC21096.
45.
Streit
,
D. A.
, and
Shin
,
E.
,
1993
, “
Equilibrators for Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
604
611
.
46.
van der Wijk
,
V.
,
2017
, “
Design and Analysis of Closed-Chain Principal Vector Linkages for Dynamic Balance With a New Method for Mass Equivalent Modeling
,”
Mech. Mach. Theory
,
107
, pp.
283
304
.
47.
van der Wijk
,
V.
,
Krut
,
S.
,
Pierrot
,
F.
, and
Herder
,
J.
,
2013
, “
Design and Experimental Evaluation of a Dynamically Balanced Redundant Planar 4-RRR Parallel Manipulator
,”
Int. J. Robot. Res.
,
32
(
6
), pp.
744
759
.
48.
Arakelian
,
V.
,
1998
, “
Complete Dynamic Balancing of Mechanisms
,”
Mech. Mach. Theory
,
33
(
4
), pp.
425
436
.
49.
Arakelian
,
V.
, and
Smith
,
M.
,
1999
, “
Complete Shaking Force and Shaking Moment Balancing of Linkages
,”
Mech. Mach. Theory
,
34
(
8
), pp.
1141
1153
.
50.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
,
Jin
,
Y.
, and
Price
,
M.
,
2015
, “
Stiffness Analysis and Experiment of a Novel 5-DoF Parallel Kinematic Machine Considering Gravitational Effects
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
82
96
.
51.
Lian
,
B.
,
Sun
,
T.
, and
Song
,
Y.
,
2016
, “
Stiffness Analysis of a 2-DoF Over-Constrained RPM With an Articulated Traveling Platform
,”
Mech. Mach. Theory
,
96
, pp.
165
178
.
52.
Smith
,
M. R.
, and
Maunder
,
L.
,
1967
, “
Inertia Forces in a Four-Bar Linkage
,”
J. Mech. Eng. Sci.
,
9
(
3
), pp.
218
225
.
53.
Arakelian
,
V.
, and
Ghazaryan
,
S.
,
2008
, “
Improvement of Balancing Accuracy of Robotic Systems: Application to Leg Orthosis for Rehabilitation Devices
,”
Mech. Mach. Theory
,
43
(
5
), pp.
565
575
.
You do not currently have access to this content.