A diamond origami pattern is a well-known origami pattern consisting of identical six-crease vertices. As each vertex can be modeled as a spherical 6R linkage with three degrees of freedom (DOF), the tessellated pattern with multiple vertices is a multi-DOF system, which makes it difficult to fully control the motion in the desired symmetric manner. Here, two splitting schemes on the diamond vertex are proposed to generate three types of unit patterns to reduce the DOF. This vertex-splitting technique is applied to the multivertex diamond origami pattern to produce several one-DOF basic assemblies, which form a number of one-DOF origami patterns. Two of the one-DOF origami patterns are discussed: one of which is a flat-foldable origami pattern mixed with four- and six-crease vertices and the other is a nonflat-foldable one mixed with four-, five-, and six-crease vertices. In the one-DOF patterns, the symmetrically kinematic property of the original diamond origami pattern is well kept. Such property would significantly facilitate engineering applications comparing to the multi-DOF origami patterns. It also paves a new road to construct one-DOF origami patterns.

References

References
1.
Wang
,
K.
, and
Chen
,
Y.
,
2011
, “Folding a Patterned Cylinder by Rigid Origami,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yim
, eds.,
Taylor & Francis Group
,
London
, pp.
265
276
.
2.
Miura
,
K.
,
2009
, “
Triangles and Quadrangles in Space
,”
Proceedings of the International Association for Shell and Spatial Structures Symposium (50th), Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures
,
Valencia
,
Sept. 28–Oct. 2
, pp.
27
38
.
3.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
4.
Dufour
,
L.
,
Owen
,
K.
,
Mintchev
,
S.
, and
Floreano
,
D.
,
2016
, “
A Drone With Insect-Inspired Folding Wings
,”
Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon
,
Oct. 9–14
, pp.
1576
1581
.
5.
Temmerman
,
N. D.
,
Mollaert
,
M.
,
Van Mele
,
T.
, and
Laet De
,
L.
,
2007
, “
Design and Analysis of a Foldable Mobile Shelter System
,”
Int. J. Space Struct.
22
(
3
), pp.
161
168
.
6.
Lee
,
T. U.
, and
Gattas
,
J. M.
,
2016
, “
Geometric Design and Construction of Structurally Stabilized Accordion Shelters
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031009
.
7.
Kruibayashi
,
K.
,
Tsuchita
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
8.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
28
), pp.
12441
12445
.
9.
Lee
,
D.
,
Kim
,
J.
,
Kim
,
S.
,
Koh
,
J.
, and
Cho
,
K.
,
2013
, “
The Deformable Wheel Robot Using Magic-Ball Origami Structure
,”
ASME
Paper No. DETC2013-13016.
10.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
430
438
.
11.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
3
(
6
), pp.
101
112
.
12.
Belke
,
C. H.
, and
Paik
,
J.
,
2017
, “
Mori: A Modular Origami Robot
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2153
2164
.
13.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
14.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
216
(
10
), pp.
959
970
.
15.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2005
, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
127
(
4
), pp.
837
840
.
16.
Liu
,
S. C.
,
Chen
,
Y.
, and
Lu
,
G. X.
,
2013
, “
The Rigid Origami Patterns for Flat Surface
,”
ASME
Paper No. DETC2013-12947.
17.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
18.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
,
2010
, “
Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031014
.
19.
Zhang
,
K.
, and
Dai
,
J. S.
,
2013
, “
Classification of Origami-Enabled Foldable Linkages and Emerging Applications
,”
ASME
Paper No. DETC2013-12227.
20.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
.
21.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-Ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085001
.
22.
Stachel
,
H.
,
2010
, “
A Kinematic Approach to Kokotsakis Meshes
,”
Comput. Aided Geom. Des.
27
(
6
), pp.
428
437
.
23.
Gattas
,
J.
,
Wu
,
W.
, and
You
,
Z.
,
2013
, “
Miura-Base Rigid Origami: Parameterizations of First-Level Derivative and Piecewise Geometries
,”
ASME J. Mech. Des.
,
135
(
11
), p.
11011
.
24.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
Trans. ASME J. Appl. Mech.
77
(
2
), pp.
215
221
.
25.
Yoshimura
,
Y.
,
1955
, “
On the Mechanism of Buckling of a Circular Cylindrical Shell Under Axial Compression
,” Technical Memorandum 1390 of the National Advisory Committee for Aeronautics.
26.
Resch
,
R. D.
,
1968
, “
Self-Supporting Structural Unit Having a Series of Repetitious Geometrical Modules
,” U.S. Patent No. 3,407,558.
27.
Tomohiro
,
T.
,
2013
, “
Designing Freeform Origami Tessellations by Generalizing Resch’s Patterns
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111006
.
28.
Fang
,
H.
,
Zhang
,
Y.
, and
Wang
,
K. W.
,
2017
, “
An Earthworm-Like Robot Using Origami-Ball Structures
,”
Proceedings of the SPIE 10164, Active and Passive Smart Structures and Integrated Systems 2017
,
Portland
,
Mar. 25–29
, p.
1016414
.
29.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
30.
Cai
,
J.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2016
, “
Motion Analysis of a Foldable Barrel Vault Based on Regular and Irregular Yoshimura Origami
,”
ASME J. Mech. Rob.
8
(
2
), p.
021017
.
31.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A
,
472
(
2190
), p.
20150846
.
32.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
33.
Hull
,
T. C.
, and
Tachi
,
T.
,
2017
, “
Double-Line Rigid Origami
,”
Proceedings of the 11th Asian Forum on Graphic Science (AFGS 2017)
,
Tokyo
,
Aug. 6–10
.
34.
Yu
,
H.
,
Guo
,
Z.
, and
Wang
,
J.
,
2018
, “
A Method of Calculating the Degree of Freedom of Foldable Plate Rigid Origami With Adjacency Matrix
,”
Adv. Mech. Eng.
10
(
6
), pp.
1
20
.
35.
Yang
,
F.
,
Chen
,
Y.
,
Kang
,
R.
, and
Ma
,
J.
,
2016
, “
Truss Transformation Method to Obtain the Non-Overconstrained Forms of 3D Overconstrained Linkages
,”
Mech. Mach. Theory
,
102
, pp.
149
166
.
36.
Hull
,
T. C.
,
1994
, “
On the Mathematics of Flat Origamis
,”
Congressus numerantium
,
100
, pp.
215
224
.
37.
Pellegrino
,
S.
, and
Calladine
,
C. R.
,
1986
, “
Matrix Analysis of Statically and Kinematically Indeterminate Frameworks
,”
Int. J. Solids Struct.
22
(
4
), pp.
409
428
.
You do not currently have access to this content.