This paper develops a geometric method to estimate the error space of 3-DOF planar mechanisms with the Minimum Volume Ellipsoid Enclosing (MVEE) approach. Both the joint clearances and actuator errors are considered in this method. Three typical planar parallel mechanisms are used to demonstrate. Error spaces of their serial limbs are analyzed. Thereafter, limb-error-space-constrained mobility of the manipulator, namely, the manipulator error space is analyzed. The MVEE method has been applied to simplify the constraint modeling. A closed-form expression for the manipulator error space is derived. The volume of the manipulator error space is numerically estimated. The approach in this paper is to develop a geometric error analysis method of parallel mechanisms with clear algebraic expressions. Moreover, no forward kinematics computations have been performed in the proposed method, in contrast to the widely used interval analysis method. Although the estimated error space is larger than the actual one, because the enclosing ellipses enlarge the regions of limb error space, the method has an attractive advantage of high computational efficiency.

References

References
1.
Tang
,
X.
,
Chai
,
X.
,
Tang
,
L.
, and
Shao
,
Z.
,
2014
, “
Accuracy Synthesis of a Multi-Level Hybrid Positioning Mechanism for the Feed Support System in Fast
,”
Robot. Comput. Integr. Manuf.
,
30
(
5
), pp.
565
575
.
2.
Wang
,
J.
, and
Masory
,
O.
,
1993
, “
On the Accuracy of a Stewart Platform. I. The Effect of Manufacturing Tolerances
,’
Proceedings of the 1993 IEEE International Conference on Robotics and Automation
, IEEE,
New York
, pp.
114
120
.
3.
Zhuang
,
H.
,
Wang
,
L. K.
, and
Roth
,
Z. S.
,
1993
, “
Error-Model-Based Robot Calibration Using a Modified CPC Model
,”
Robot. Comput. Integr. Manuf.
,
10
(
4
), pp.
287
299
.
4.
Li
,
C.
,
Wu
,
Y.
,
Löwe
,
H.
, and
Li
,
Z.
,
2016
, “
Poe-Based Robot Kinematic Calibration Using Axis Configuration Space and the Adjoint Error Model
,”
IEEE. Trans. Robot.
,
32
(
5
), pp.
1264
1279
.
5.
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2006
, “
Error Propagation on the Euclidean Group With Applications to Manipulator Kinematics
,”
IEEE. Trans. Robot.
,
22
(
4
), pp.
591
602
.
6.
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2008
, “
Nonparametric Second-Order Theory of Error Propagation on Motion Groups
,”
Int. J. Rob. Res.
,
27
(
11–12
), pp.
1258
1273
.
7.
Tsai
,
M.-J.
, and
Lai
,
T.-H.
,
2008
, “
Accuracy Analysis of a Multi-Loop Linkage With Joint Clearances
,”
Mech. Mach. Theory.
,
43
(
9
), pp.
1141
1157
.
8.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators
,”
J. Mech. Robot.
,
3
(
2
),
021013
.
9.
Tian
,
W.
,
Gao
,
W.
,
Zhang
,
D.
, and
Huang
,
T.
,
2014
, “
A General Approach for Error Modeling of Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
79
, pp.
17
23
.
10.
Dai
,
Y.
,
Fu
,
Y.
,
Li
,
B.
,
Wang
,
X.
,
Yu
,
T.
, and
Wang
,
W.
,
2017
, “
Clearance Effected Accuracy and Error Sensitivity Analysis: A New Nonlinear Equivalent Method for Spatial Parallel Robot
,”
J. Mech. Sci. Tech.
,
31
(
11
), pp.
5493
5504
.
11.
Yu
,
A.
,
Bonev
,
I. A.
, and
Zsombor-Murray
,
P.
,
2008
, “
Geometric Approach to the Accuracy Analysis of a Class of 3-DOF Planar Parallel Robots
,”
Mech. Mach. Theory.
,
43
(
3
), pp.
364
375
.
12.
Renders
,
J.-M.
,
Rossignol
,
E.
,
Becquet
,
M.
, and
Hanus
,
R.
,
1991
, “
Kinematic Calibration and Geometrical Parameter Identification for Robots
,”
IEEE. Trans. Rob. Autom.
,
7
(
6
), pp.
721
732
.
13.
Patel
,
A. J.
, and
Ehmann
,
K.
,
1997
, “
Volumetric Error Analysis of a Stewart Platform-Based Machine Tool
,”
CIRP Ann.-Manuf. Tech.
,
46
(
1
), pp.
287
290
.
14.
Li
,
H.
,
Zhang
,
X.
,
Zeng
,
L.
, and
Wu
,
H.
,
2017
, “
Vision-Aided Online Kinematic Calibration of a Planar 3 r rr Manipulator
”.
Mechanism and Machine Science: Proceedings of ASIAN MMS 2016 & CCMMS 2016
, Springer,
Berlin
, pp.
963
972
.
15.
Zhang
,
J.
, and
Du
,
X.
,
2015
, “
Time-Dependent Reliability Analysis for Function Generation Mechanisms with Random Joint Clearances
,”
Mech. Mach. Theory.
,
92
, pp.
184
199
.
16.
Li
,
X.
,
Ding
,
X.
, and
Chirikjian
,
G. S.
,
2015
, “
Analysis of Angular-Error Uncertainty in Planar Multiple-Loop Structures With Joint Clearances
,”
Mech. Mach. Theory.
,
91
, pp.
69
85
.
17.
Ting
,
K.-L.
,
Hsu
,
K.-L.
,
Yu
,
Z.
, and
Wang
,
J.
,
2017
, “
Clearance-Induced Output Position Uncertainty of Planar Linkages With Revolute and Prismatic Joints
,”
Mech. Mach. Theory.
,
111
, pp.
66
75
.
18.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
SIAM
,
Philadelphia
.
19.
Pac
,
M. R.
, and
Popa
,
D. O.
,
2013
, “
Interval Analysis of Kinematic Errors in Serial Manipulators Using Product of Exponentials Formula
,”
IEEE. Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
525
535
.
20.
Briot
,
S.
, and
Bonev
,
I. A.
,
2008
, “
Accuracy Analysis of 3-DOF Planar Parallel Robots
,”
Mech. Mach. Theory.
,
43
(
4
), pp.
445
458
.
21.
Briot
,
S.
, and
Bonev
,
I. A.
,
2010
, “
Accuracy Analysis of 3T1R Fully-Parallel Robots
,”
Mech. Mach. Theory.
,
45
(
5
), pp.
695
706
.
22.
Yao
,
R.
,
Zhu
,
W.
, and
Huang
,
P.
,
2013
, “
Accuracy Analysis of Stewart Platform Based on Interval Analysis Method
,”
Chinese J. Mech. Eng.
,
26
(
1
), pp.
29
34
.
23.
Viegas
,
C.
,
Daney
,
D.
,
Tavakoli
,
M.
, and
de Almeida
,
A. T.
,
2017
, “
Performance Analysis and Design of Parallel Kinematic Machines Using Interval Analysis
,”
Mech. Mach. Theory.
,
115
, pp.
218
236
.
24.
Meng
,
J.
, and
Li
,
Z.
,
2005
, “
A General Approach for Accuracy Analysis of Parallel Manipulators with Joint Clearance
”.
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005)
, IEEE,
New York
, pp.
2468
2473
.
25.
Meng
,
J.
,
Zhang
,
D.
, and
Li
,
Z.
,
2009
, “
Accuracy Analysis of Parallel Manipulators With Joint Clearance
,”
J. Mech. Des.
,
131
(
1
),
011013
.
26.
Daniali
,
H.
,
Varedi
,
S.
,
Dardel
,
M.
, and
Fathi
,
A.
,
2015
, “
A Novel Algorithm for Kinematic and Dynamic Optimal Synthesis of Planar Four-Bar Mechanisms with Joint Clearance
,”
J. Mech. Sci. Tech.
,
29
(
5
), pp.
2059
2065
.
27.
Chen
,
G.
,
Wang
,
H.
, and
Lin
,
Z.
,
2013
, “
A Unified Approach to the Accuracy Analysis of Planar Parallel Manipulators Both With Input Uncertainties and Joint Clearance
,”
Mech. Mach. Theory.
,
64
, pp.
1
17
.
28.
Van Aelst
,
S.
, and
Rousseeuw
,
P.
,
2009
, “
Minimum Volume Ellipsoid
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
1
(
1
), pp.
71
82
.
29.
Moshtagh
,
N.
et al. 
,
2005
, “
Minimum Volume Enclosing Ellipsoid
,”
Convex Optim.
,
111
, p.
112
.
30.
Ting
,
K.-L.
,
Zhu
,
J.
, and
Watkins
,
D.
,
2000
, “
The Effects of Joint Clearance on Position and Orientation Deviation of Linkages and Manipulators
,”
Mech. Mach. Theory.
,
35
(
3
), pp.
391
401
.
31.
Todd
,
M. J.
,
2016
,
Minimum-Volume Ellipsoids: Theory and Algorithms
,
SIAM
,
Philadelphia
.
This content is only available via PDF.
You do not currently have access to this content.