Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic representative elements that can form the basis for building soft self-actuating structures/mechanisms. When placed in different configurations, they exhibit unique stroke amplification characteristics that can be leveraged to create interesting deformation patterns. Such deformations occur as a combination of axial and bending deflection due to internal pressurization and external forces. This paper presents a lumped reduced-order model that enables quick and accurate analysis of mechanisms made from FREEs grouped as a system. The model proposed is a modified four-spring pseudo-rigid-body (PRB) model that effectively captures the axial and bending stiffnesses of contracting FREEs. Parametric estimation of the model is performed using a multistart optimization routine to fit the PRB model with results from experiments and finite element analysis (FEA). The model is also generalized and statistically verified for FREEs with different fiber angles, length-to-diameter ratios, and different actuation pressures. Finally, efficacy of the approach is validated through three case studies that involve a planar arrangement of FREEs at different orientations.

References

References
1.
Laschi
,
C.
, and
Cianchetti
,
M.
,
2014
, “
Soft Robotics: New Perspectives for Robot Bodyware and Control
,”
Front. Bioeng. Biotechnol.
,
2
, p.
3
.
2.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
3.
Krishnan
,
G.
,
Bishop-Moser
,
J.
,
Kim
,
C.
, and
Kota
,
S.
,
2012
, “
Evaluating Mobility Behavior of Fluid Filled Fiber-Reinforced Elastomeric Enclosures
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, American Society of Mechanical Engineers, pp.
1089
1099
.
4.
Krishnan
,
G.
,
Bishop-Moser
,
J.
,
Kim
,
C.
, and
Kota
,
S.
,
2015
, “
Kinematics of a Generalized Class of Pneumatic Artificial Muscles
,”
J. Mech. Robot.
,
7
(
4
),
041014
.
5.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE. Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.
6.
Kothera
,
C. S.
,
Jangid
,
M.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
,
2009
, “
Experimental Characterization and Static Modeling of McKibben Actuators
,”
J. Mech. Des.
,
131
,
91010
.
7.
Azizi
,
E.
,
Brainerd
,
E. L.
, and
Roberts
,
T. J.
,
2008
, “
Variable Gearing in Pennate Muscles
,”
Proc. Natl. Acad. Sci.
,
105
(
5
), pp.
1745
1750
.
8.
Shan
,
Y.
,
Philen
,
M. P.
,
Bakis
,
C. E.
,
Wang
,
K. W.
, and
Rahn
,
C. D.
,
2006
, “
Nonlinear-Elastic Finite Axisymmetric Deformation of Flexible Matrix Composite Membranes Under Internal Pressure and Axial Force
,”
Compos. Sci. Technol.
,
66
(
15
), pp.
3053
3063
.
9.
Peel
,
L.
,
1998
, “Fabrication and Mechanics of Fiber-Reinforced Elastomers,” Ph.D. thesis,
Brigham Young University
,
Provo, UT
.
10.
Klute
,
G. K.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
,
1999
, “
McKibben Artificial Muscles: Pneumatic Actuators With Biomechanical Intelligence
,”
1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Atlanta, GA
,
Sep. 19–23
, pp.
221
226
.
11.
Singh
,
G.
, and
Krishnan
,
G.
,
2015
, “
An Isoperimetric Formulation to Predict Deformation Behavior of Pneumatic Fiber Reinforced Elastomeric Actuators
,”
IEEE International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
1738
1743
.
12.
Connolly
,
F.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2015
, “
Mechanical Programming of Soft Actuators by Varying Fiber Angle
,”
Soft Robotics
,
2
(
1
), pp.
26
32
.
13.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C. D.
,
2008
, “
Geometrically Exact Models for Soft Robotic Manipulators
,”
IEEE. Trans. Robot.
,
24
(
4
), pp.
773
780
.
14.
Trivedi
,
D.
,
2010
, “
Modeling, Optimal Design, Shape Estimation and Workspace
,” Ph.D. thesis,
The Pennsylvania State University
,
Pennsylvania, PA
.
15.
Antman
,
S. S.
,
1995
,
Nonlinear Problems of Elasticity
,
Springer-Verlag
,
New York
.
16.
Giri
,
N.
, and
Walker
,
I. D.
,
2011
, “
Three Module Lumped Element Model of a Continuum Arm Section
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
4060
4065
.
17.
Walker
,
I. D.
,
Mattfeld
,
R.
,
Mutlu
,
A.
,
Bartow
,
A.
, and
Giri
,
N.
,
2012
, “
A Novel Approach to Robotic Climbing Using Continuum Appendages in In-Situ Exploration
,”
2012 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 3–10
, IEEE, pp.
1
9
.
18.
Midha
,
A.
, and
Howell
,
L. L.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
, pp.
280
290
.
19.
Midha
,
A.
, and
Howell
,
L. L.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
J. Mech. Des.
,
118
, p.
127
.
20.
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
J. Mech. Des.
,
117
, p.
157
.
21.
Satheeshbabu
,
S.
, and
Krishnan
,
G.
,
2017
, “
Designing Systems of Fiber Reinforced Pneumatic Actuators Using a Pseudo-Rigid Body Model
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
1201
1206
.
22.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
Extension Effects in Compliant Joints and Pseudo-Rigid-Body Models
,”
J. Mech. Des.
,
138
(
9
),
092302
.
23.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
A Three-Spring Pseudorigid-Body Model for Soft Joints With Significant Elongation Effects
,”
J. Mech. Robot.
,
8
(
6
),
61001
.
24.
Singh
,
G.
, and
Krishnan
,
G.
,
2017
, “
A Constrained Maximization Formulation to Analyze Deformation of Fiber Reinforced Elastomeric Actuators
,”
Smart Mater. Struct.
,
26
(
6
),
065024
.
25.
Hocking
,
E. G.
, and
Wereley
,
N. M.
,
2013
, “
Analysis of Nonlinear Elastic Behavior in Miniature Pneumatic Artificial Muscles
,”
Smart Mater. Struct.
,
22
(
1
),
14016
.
26.
Manti
,
M.
,
Hassan
,
T.
,
Passetti
,
G.
,
D’Elia
,
N.
,
Laschi
,
C.
, and
Cianchetti
,
M.
,
2015
, “
A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping
,”
Soft Rob.
,
2
(
3
), pp.
107
116
.
27.
Deimel
,
R.
, and
Brock
,
O.
,
2015
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
”.
Int. J. Robotics Res.
, 0278364915592961.
28.
Erdman
,
A. G.
,
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
2001
,
Mechanism Design 1
,
Prentice-Hall
,
Upper Saddle River, NJ
.
29.
Yu
,
Y.-Q.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M.-G.
,
2005
, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
J. Mech. Des.
,
127
(
4
), pp.
760
.
You do not currently have access to this content.