We present a novel 4-DOF (degrees of freedom) parallel robot designed for five-axis micromachining applications. Two of its five telescoping legs operate simultaneously, thus acting as an extensible parallelogram linkage, and in conjunction with two other legs control the position of the tooltip. The fifth leg controls the tilt of the end-effector (a spindle), while a turntable fixed at the base of the robot controls the swivel of the workpiece. The robot is capable of tilting its end-effector up to 90 deg, for any tooltip position. In this paper, we study the mobility of the new parallel kinematic machine (PKM), describe its inverse and direct kinematic models, then study its singularities, and analyze its workspace. Finally, we propose a potential mechanical design for this PKM utilizing telescopic actuators as well as the procedure for optimizing it. In addition, we discuss the possibility of using constant-length legs and base-mounted linear actuators in order to increase the volume of the workspace.

References

References
1.
Taghirad
,
H. D.
,
2013
,
Parallel Robots: Mechanics and Control
,
CRC Press, Boca Raton, FL
.
2.
Pandilov
,
Z.
, and
Dukovski
,
V.
2012
, “
Parallel Kinematics Machine Tools: Overview – From History to the Future,
Annals of Faculty Engineering Hunedoara – International Journal of Engineering, Fascicule 2
,
Skopje, Macedonia
, pp.
111
124
.
3.
Gough
,
V. E.
1956–1957
, “
Contribution to Discussion of Papers on Research in Automobile Stability, Control and Tyre Performance
Proceedings of the Automotive Division of the Institution of Mechanical Engineers
, pp.
392
394
.
4.
Schwaar
,
M.
,
Jaehnert
,
T.
, and
Ihlenfeld
,
S.
,
2002
, “
Mechatronic Design, Experimental Property Analysis and Machining Strategies for a 5-Strut-PKM
,”
3rd Chemnitz Parallel Kinematics Seminar
,
Chemnitz, Germany
,
April 23–25
.
5.
Liu
,
X.-J.
,
Wang
,
L.-P.
,
Xie
,
F.
, and
Bonev
,
I. A.
,
2010
, “
Design of a 3-Axis Articulated Tool Head With Parallel Kinematics Achieving Desired Motion/Force Transmission Characteristics
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
),
021009
.
6.
Pierrot
,
F.
, and
Company
,
O.
2000
, “
Towards Non-Hexapod Mechanisms for High Performance Parallel Machines
,”
26th Annual Conference of the IEEE Industrial Electronics Society
,
Nagoya, Japan
, Vol.
1
, pp.
229
234
.
7.
Altuzarra
,
O.
,
Martin
,
Y. S.
,
Amezua
,
E.
, and
Hernandez
,
A.
,
2009
, “
Motion Pattern Analysis of Parallel Kinematic Machines: A Case Study
,”
Rob. Comput.-Integr. Manuf.
,
25
(
2
), pp.
432
440
.
8.
Shayya
,
S.
,
Krut
,
S.
,
Company
,
O.
,
Baradat
,
C.
, and
Pierrot
,
F.
,
2013
, “
A Novel (3T-1R) Redundant Parallel Mechanism With Large Operational Workspace and Rotational Capability
,”
International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
436
443
.
9.
Shayya
,
S.
,
Krut
,
S.
,
Company
,
O.
,
Baradat
,
C.
, and
Pierrot
,
F.
2014
, “
A Novel 4 DoFs (3T-1R) Parallel Manipulator with Actuation Redundancy – Workspace Analysis,
Proceeding of the Second Conference MeTrApp
,
Springer Science+ Business Media
,
Dordrecht
, pp.
317
324
.
10.
Isaksson
,
M.
,
Gosselin
,
C.
, and
Marlow
,
K.
,
2017
, “
Singularity Analysis of a Class of Kinematically Redundant Parallel Schönflies Motion Generators
,”
Mech. Mach. Theory
,
112
, pp.
172
191
.
11.
Kong
,
X.
, and
Gosselin
,
C.
,
2002
, “
Parallel Manipulators With Four Degrees of Freedom
,” U.S. Patent No. 6,997,669 B2, filed on Nov. 12, 2002.
12.
Amine
,
S.
,
Masouleh
,
M. T.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
,
2012
, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
ASME J. Mech. Rob.
,
4
,
011011
.
13.
Pierrot
,
F.
, and
Company
,
O.
1999
, “
H4: A New Family of 4-DOF Parallel Robots
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Atlanta, GA,
pp.
508
513
.
14.
Company
,
O.
,
Marquet
,
F.
, and
Pierrot
,
F.
,
2003
, “
A New High-Speed 4-DOF Parallel Robot Synthesis and Modeling Issues
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
411
420
.
15.
Li
,
Z.
,
Lou
,
Y.
,
Zhang
,
Y.
,
Liao
,
B.
, and
Li
,
Z.
,
2013
, “
Type Synthesis, Kinematic Analysis, and Optimal Design of a Novel Class of Schönflies-Motion Parallel Manipulators
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
674
686
.
16.
Xie
,
F.
, and
Liu
,
X.-J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
),
041015
.
17.
Company
,
O.
,
Pierrot
,
F.
,
Nabat
,
V.
, and
Rodriguez
,
M. de la O.
,
2005
, “
Schoenflies Motion Generator: A New Non Redundant Parallel Manipulator With Unlimited Rotation Capability
,”
IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
, pp.
3250
3255
.
18.
Isaksson
,
M.
,
Nyhof
,
L.
, and
Nahavandi
,
S.
,
2015
, “
On the Feasibility of Utilising Gearing to Extend the Rotational Workspace of a Class of Parallel Robots
,”
Rob. Comput.-Integr. Manuf.
,
35
, pp.
126
136
.
19.
Gosselin
,
C.
,
Isaksson
,
M.
,
Marlow
,
K.
, and
Laliberté
,
T.
,
2016
, “
Workspace and Sensitivity Analysis of a Novel Nonredundant Parallel SCARA Robot Featuring Infinite Tool Rotation
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
776
783
.
20.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
,
2002
, “
New Kinematic Structures For 2-, 3-, 4-, And 5-DOF Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
, pp.
1395
1411
.
21.
Salgado
,
O.
,
Altuzarra
,
O.
,
Amezua
,
E.
, and
Hernández
,
A.
,
2007
, “
Parallelogram-Based Parallel Manipulator for Schönflies Motion
,”
ASME J. Mech. Des.
,
129
, pp.
1243
1250
.
22.
Salgado
,
O.
,
Altuzarra
,
O.
,
Petuya
,
V.
, and
Hernández
,
A.
,
2008
, “
Synthesis and Design of a Novel 3T1R Fully-Parallel Manipulator
,”
ASME J. Mech. Des.
,
130
, pp.
1
8
.
23.
Kim
,
S. M
,
Kim
,
W.
, and
Yi
,
B.-J
,
2009
, “
Kinematic Analysis and Design of a New 3T1R 4-DOF Parallel Mechanism with Rotational Pitch Motion
,”
International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 11–15
.
24.
Rolland
,
L
,
1999
, “
The Manta and the Kanuk: Novel 4 DOF Parallel Mechanism for Industrial Handling
,”
Proceedings of the ASME Dynamic Systems and Control Division IMECE 1999 Conference
,
Nashville, TN,
,
Nov. 14–19
.
25.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
2nd ed.
,
Springer
,
New York, NY
, pp.
43
45
.
26.
Xie
,
F.
,
Li
,
T.
, and
Liu
,
X.
,
2013
, “
Type Synthesis of 4-DOF Parallel Kinematic Mechanisms Based on Grassmann Line Geometry and Atlas Method
,”
Chin. J. Mech. Eng.
,
26
(
6
), pp.
1073
1081
.
27.
Amine
,
S.
,
Nurahmi
,
L.
,
Wenger
,
P.
, and
Caro
,
S.
,
2013
, “
Conceptual Design of Schoenflies Motion Generators Based on the Wrench Graph
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
, p.
V06AT07A058
.
28.
Xie
,
H.
,
Shen
,
L. Y. F.
,
Cao
,
S. W.
, and
Cai
,
W.
,
2014
, “
Structural Synthesis for a Lower-Mobility Parallel Kinematic Machine With Swivel Hinges
,”
Rob. Comput.-Integr. Manuf.
,
30
(
5
), pp.
413
420
.
29.
Guo
,
W.
,
Guo
,
W.
, and
Gao
,
F.
2014
, “
Type Synthesis of 4-DOF and 5-DOF Parallel Mechanisms Considering Passive Constraining Limbs
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, pp.
1
9
.
30.
Zeng
,
Q.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2016
, “
Design of General Kinematotropic Mechanisms
,”
Rob. Comput.-Integr. Manuf.
,
38
, pp.
67
81
.
31.
Lin
,
R.
,
Guo
,
W.
, and
Gao
,
F.
,
2016
, “
Type Synthesis of a Family of Novel Four, Five, and Six Degrees-of-Freedom Sea Lion Ball Mechanisms With Three Limbs
,”
ASME J. Mech. Rob.
,
8
, pp.
1
12
.
32.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C.
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC,
pp.
496
502
.
33.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1994
, “
Singularity Analysis of Mechanisms and Robots via a Motion-Space Model of the Instantaneous Kinematics
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Diego, CA
, pp.
980
985
.
34.
Liu
,
X.-J.
, and
Wang
,
J.
2014
,
Parallel Kinematics
,
Springer-Verlag,
Berlin Heidelberg
, pp.
144
148
.
35.
Xie
,
F.
,
Liu
,
X.-J.
,
Wang
,
L.-P.
, and
Wang
,
J.
,
2010
, “
Optimal Design and Development of a Decoupled A/B-Axis Tool Head With Parallel Kinematics
,”
Adv. Mech. Eng.
,
2
,
474602
.
36.
Chablat
,
D.
, and
Wenger
,
P.
,
2003
, “
Architecture Optimization of a 3-DOF Translational Parallel Mechanism for Machining Applications, the Orthoglide
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
403
410
.
37.
Courteille
,
E.
,
Deblaise
,
D.
, and
Maurine
,
P.
2009
, “
Design Optimization of a Delta-Like Parallel Robot Through Global Stiffness Performance Evaluation
,”
Proceeding of the International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 11–15
, pp.
5159
5166
.
38.
Kelaiaia
,
R.
,
Company
,
O.
, and
Zaatri
,
A.
,
2012
, “
Multiobjective Optimization of a Linear Delta Parallel Robot
,”
Mech. Mach. Theory
,
50
, pp.
159
178
.
39.
Chang
,
K,-H.
,
2015
,
Design Theory and Methods Using CAD/CAE: The Computer Aided Engineering Design Series
,
Elsevier
,
New York
, pp.
408
429
.
40.
Bonev
,
I. A.
, and
Ryu
,
J.
,
2001
, “
A Geometrical Method for Computing the Constant-Orientation Workspace of 6-PRRS Parallel Manipulators
,”
Mech. Mach. Theory
,
36
(
1
), pp.
1
13
.
You do not currently have access to this content.